Julia lines of general random dirichlet series

被引:6
作者
Jin, Qiyu [1 ]
Deng, Guantie [2 ]
Sun, Daochun [3 ]
机构
[1] Univ Bretagne Sud, F-56017 Vannes, France
[2] Beijing Normal Univ, Sch Math Sci, Key Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[3] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
random Dirichlet series; order (R); Julia lines; entire function; VALUES;
D O I
10.1007/s10587-012-0074-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a random entire function f(s, omega) defined by a random Dirichlet series where X (n) are independent and complex valued variables, 0 a (c) 1/2 lambda (n) a dagger u +a. We prove that under natural conditions, for some random entire functions of order (R) zero f(s, omega) almost surely every horizontal line is a Julia line without an exceptional value. The result improve a theorem of J.R.Yu: Julia lines of random Dirichlet series. Bull. Sci. Math. 128 (2004), 341-353, by relaxing condition on the distribution of X (n) for such function f(s, omega) of order (R) zero, almost surely.
引用
收藏
页码:919 / 936
页数:18
相关论文
共 17 条
[1]  
DAVIES PL, 1973, P LOND MATH SOC, V26, P99
[2]   Picard points of random Dirichlet series [J].
Ding, XQ ;
Yu, JR .
BULLETIN DES SCIENCES MATHEMATIQUES, 2000, 124 (03) :225-238
[3]  
Kahane JP., 1985, SOME RANDOM SERIES F
[4]  
LITTLEWOOD JE, 1949, ANN MATH, V50, P990, DOI 10.2307/1969591
[5]  
Nevanlinna R, 1929, Le Theoreme de Picard-Borel et la Theorie des Fonctions Meromorphes
[6]  
PALEY REA, 1930, P CAMBRIDGE PHILOS S, V26, P458
[7]  
Paley REAC, 1932, P CAMB PHILOS SOC, V28, P190
[8]  
Paley REAC, 1930, P CAMB PHILOS SOC, V26, P337
[9]  
SUN DC, 1989, CR ACAD SCI I-MATH, V308, P205
[10]  
SUN DC, 1990, CHINESE ANN MATH B, V11, P33