Orthogonal Polynomials on the Sierpinski Gasket

被引:4
作者
Okoudjou, Kasso A. [1 ]
Strichartz, Robert S. [2 ]
Tuley, Elizabeth K. [3 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Jacobi matrix; Laplacian; Sierpinski gasket; Orthogonal polynomials; Recursion relation; CALCULUS;
D O I
10.1007/s00365-013-9187-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The construction of a Laplacian on a class of fractals which includes the Sierpinski gasket (SG) has given rise to intensive research on analysis on fractals. For instance, a complete theory of polynomials and power series on SG has been developed by one of us and his coauthors. We build on this body of work to construct certain analogs of classical orthogonal polynomials (OP) on SG. In particular, we investigate key properties of these OP on SG, including a three-term recursion formula and the asymptotics of the coefficients appearing in this recursion. Moreover, we develop numerical tools that allow us to graph a number of these OP. Finally, we use these numerical tools to investigate the structure of the zero and the nodal sets of these polynomials.
引用
收藏
页码:311 / 340
页数:30
相关论文
共 18 条
[1]  
[Anonymous], ANALYSIS MUNICH
[2]  
[Anonymous], THESIS KYOTO U
[3]   What is not in the domain of the Laplacian on Sierpinski gasket type fractals [J].
Ben-Bassat, O ;
Strichartz, RS ;
Teplyaev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 166 (02) :197-217
[4]   Calculus on the Sierpinski gasket II: Point singularities, eigenfunctions, and normal derivatives of the heat kernel [J].
Ben-Gal, Nitsan ;
Shaw-Krauss, Abby ;
Strichartz, Robert S. ;
Young, Clint .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (09) :3883-3936
[5]  
CHRISTENSEN O, 2002, INTRO FRAMES RIESZ B
[6]   Fractal differential equations on the Sierpinski gasket [J].
Dalrymple, K ;
Strichartz, RS ;
Vinson, JP .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (2-3) :203-284
[7]  
Fukushima M., 1992, POTENTIAL ANAL, V1, P1, DOI DOI 10.1007/BF00249784
[8]  
GAUTSCHI W, 2004, Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation
[9]   Orthogonal Polynomials with Respect to Self-Similar Measures [J].
Heilman, Steven M. ;
Owrutsky, Philip ;
Strichartz, Robert S. .
EXPERIMENTAL MATHEMATICS, 2011, 20 (03) :238-259
[10]  
Horn R.A., 2012, Matrix Analysis