Dichotomies for Lorentz spaces

被引:4
作者
Glab, Szymon [1 ]
Strobin, Filip [1 ,2 ]
Yang, Chan Woo [3 ]
机构
[1] Lodz Univ Technol, Inst Math, Fac Tech Phys Informat Technol & Appl Math, PL-93005 Lodz, Poland
[2] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[3] Korea Univ, Dept Math, Seoul 136701, South Korea
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2013年 / 11卷 / 07期
关键词
Lorentz spaces; Integration; Baire category; Porosity;
D O I
10.2478/s11533-013-0241-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume that L-p,L-q; L-p1,L-q1 , ..., L-pn,L-qn are Lorentz spaces. This article studies the question: what is the size of the set E = {(f(1),..., f(n)) is an element of L-p1,L-q1 x ... x L-pn,L-qn : f(1) ... f(n) is an element of L-p,L-q}. We prove the following dichotomy: either E = L-p1,L-q1 x ... x L-pn,L-qn or E is sigma-porous in L-p1,L-q1 x ... x L-pn,L-qn , provided 1/p not equal 1/p(1) + ... + 1/p(n). In general case we obtain that either E = L-p1,L-q1 x ... x L-pn,L-qn or E is meager. This is a generalization of the results for classical L-p spaces.
引用
收藏
页码:1228 / 1242
页数:15
相关论文
共 6 条