Quantum Trajectories and Their Statistics for Remotely Entangled Quantum Bits

被引:41
作者
Chantasri, Areeya [1 ,2 ]
Kimchi-Schwartz, Mollie E. [3 ]
Roch, Nicolas [4 ,5 ]
Siddiqi, Irfan [3 ]
Jordan, Andrew N. [1 ,2 ,6 ]
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[2] Univ Rochester, Ctr Coherence & Quantum Opt, Rochester, NY 14627 USA
[3] Univ Calif Berkeley, Dept Phys, Quantum Nanoelect Lab, Berkeley, CA 94720 USA
[4] Univ Grenoble Alpes, Inst NEEL, F-38000 Grenoble, France
[5] CNRS, Inst NEEL, F-38000 Grenoble, France
[6] Chapman Univ, Inst Quantum Studies, 1 Univ Dr, Orange, CA 92866 USA
基金
美国国家科学基金会;
关键词
SUPERCONDUCTING QUBIT; STATE; INFORMATION; INEQUALITY; VIOLATION; DYNAMICS; GATE;
D O I
10.1103/PhysRevX.6.041052
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We experimentally and theoretically investigate the quantum trajectories of jointly monitored transmon qubits embedded in spatially separated microwave cavities. Using nearly quantum-noise-limited superconducting amplifiers and an optimized setup to reduce signal loss between cavities, we can efficiently track measurement-induced entanglement generation as a continuous process for single realizations of the experiment. The quantum trajectories of transmon qubits naturally split into low and high entanglement classes. The distribution of concurrence is found at any given time, and we explore the dynamics of entanglement creation in the state space. The distribution exhibits a sharp cutoff in the high concurrence limit, defining a maximal concurrence boundary. The most-likely paths of the qubits' trajectories are also investigated, resulting in three probable paths, gradually projecting the system to two even subspaces and an odd subspace, conforming to a "half-parity" measurement. We also investigate the most-likely time for the individual trajectories to reach their most entangled state, and we find that there are two solutions for the local maximum, corresponding to the low and high entanglement routes. The theoretical predictions show excellent agreement with the experimental entangled-qubit trajectory data.
引用
收藏
页数:14
相关论文
共 56 条
[1]   Violation of Bell's inequality in Josephson phase qubits [J].
Ansmann, Markus ;
Wang, H. ;
Bialczak, Radoslaw C. ;
Hofheinz, Max ;
Lucero, Erik ;
Neeley, M. ;
O'Connell, A. D. ;
Sank, D. ;
Weides, M. ;
Wenner, J. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2009, 461 (7263) :504-506
[2]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[3]   Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits [J].
Bialczak, R. C. ;
Ansmann, M. ;
Hofheinz, M. ;
Lucero, E. ;
Neeley, M. ;
O'Connell, A. D. ;
Sank, D. ;
Wang, H. ;
Wenner, J. ;
Steffen, M. ;
Cleland, A. N. ;
Martinis, J. M. .
NATURE PHYSICS, 2010, 6 (06) :409-413
[4]   Observing Quantum State Diffusion by Heterodyne Detection of Fluorescence [J].
Campagne-Ibarcq, P. ;
Six, P. ;
Bretheau, L. ;
Sarlette, A. ;
Mirrahimi, M. ;
Rouchon, P. ;
Huard, B. .
PHYSICAL REVIEW X, 2016, 6 (01)
[5]   Observing Interferences between Past and Future Quantum States in Resonance Fluorescence [J].
Campagne-Ibarcq, P. ;
Bretheau, L. ;
Flurin, E. ;
Auffeves, A. ;
Mallet, F. ;
Huard, B. .
PHYSICAL REVIEW LETTERS, 2014, 112 (18)
[6]   Amplification and squeezing of quantum noise with a tunable Josephson metamaterial [J].
Castellanos-Beltran, M. A. ;
Irwin, K. D. ;
Hilton, G. C. ;
Vale, L. R. ;
Lehnert, K. W. .
NATURE PHYSICS, 2008, 4 (12) :929-931
[7]   Action principle for continuous quantum measurement [J].
Chantasri, A. ;
Dressel, J. ;
Jordan, A. N. .
PHYSICAL REVIEW A, 2013, 88 (04)
[8]   Stochastic path-integral formalism for continuous quantum measurement [J].
Chantasri, Areeya ;
Jordan, Andrew N. .
PHYSICAL REVIEW A, 2015, 92 (03)
[9]   Measurement-induced entanglement for excitation stored in remote atomic ensembles [J].
Chou, CW ;
de Riedmatten, H ;
Felinto, D ;
Polyakov, SV ;
van Enk, SJ ;
Kimble, HJ .
NATURE, 2005, 438 (7069) :828-832
[10]   Detecting highly entangled states with a joint qubit readout [J].
Chow, J. M. ;
DiCarlo, L. ;
Gambetta, J. M. ;
Nunnenkamp, A. ;
Bishop, Lev S. ;
Frunzio, L. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2010, 81 (06)