Constrained variable projection method for blind deconvolution

被引:4
作者
Cornelio, A. [1 ]
Piccolomini, E. Loli [2 ]
Nagy, J. G. [3 ]
机构
[1] Univ Modena & Reggio Emilia, Dept Pure & Appl Math, Modena, Italy
[2] Univ Bologna, Dept Math, I-40126 Bologna, Italy
[3] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
来源
2ND INTERNATIONAL WORKSHOP ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS (NCMIP 2012) | 2012年 / 386卷
关键词
LEAST-SQUARES PROBLEMS;
D O I
10.1088/1742-6596/386/1/012005
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper is focused on the solution of the blind deconvolution problem, here modeled as a separable nonlinear least squares problem. The well known ill-posedness, both on recovering the blurring operator and the true image, makes the problem really difficult to handle. We show that, by imposing appropriate constraints on the variables and with well chosen regularization parameters, it is possible to obtain an objective function that is fairly well behaved. Hence, the resulting nonlinear minimization problem can be effectively solved by classical methods, such as the Gauss-Newton algorithm.
引用
收藏
页数:5
相关论文
共 9 条
[1]   A scaled gradient projection method for constrained image deblurring [J].
Bonettini, S. ;
Zanella, R. ;
Zanni, L. .
INVERSE PROBLEMS, 2009, 25 (01)
[2]   AN EFFICIENT ITERATIVE APPROACH FOR LARGE-SCALE SEPARABLE NONLINEAR INVERSE PROBLEMS [J].
Chung, Julianne ;
Nagy, James G. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 31 (06) :4654-4674
[3]  
Cornelio A, 2012, TECH REP
[4]   DIFFERENTIATION OF PSEUDO-INVERSES AND NONLINEAR LEAST-SQUARES PROBLEMS WHOSE VARIABLES SEPARATE [J].
GOLUB, GH ;
PEREYRA, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) :413-432
[5]  
Kaufman L., 1975, BIT (Nordisk Tidskrift for Informationsbehandling), V15, P49, DOI 10.1007/BF01932995
[6]   METHOD FOR SEPARABLE NON-LINEAR LEAST-SQUARES PROBLEMS WITH SEPARABLE NON-LINEAR EQUALITY CONSTRAINTS [J].
KAUFMAN, L ;
PEREYRA, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (01) :12-20
[7]  
Merikoski J J., 2008, INT J PURE APPL MATH, V43, P95
[8]   Separable nonlinear least squares fitting with linear bound constraints and its application in magnetic resonance spectroscopy data quantification [J].
Sima, Diana M. ;
Van Huffel, Sabine .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 203 (01) :264-278
[9]   Image quality assessment: From error visibility to structural similarity [J].
Wang, Z ;
Bovik, AC ;
Sheikh, HR ;
Simoncelli, EP .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (04) :600-612