A Synthetic Hydrogel Composite with the Mechanical Behavior and Durability of Cartilage

被引:264
作者
Yang, Feichen [1 ]
Zhao, Jiacheng [1 ]
Koshut, William J. [2 ]
Watt, John [3 ]
Riboh, Jonathan C. [4 ]
Gall, Ken [2 ]
Wiley, Benjamin J. [1 ]
机构
[1] Duke Univ, Dept Chem, 124 Sci Dr,Box 90354, Durham, NC 27708 USA
[2] Duke Univ, Dept Mech Engn & Mat Sci, 144 Hudson Hall,Box 90300, Durham, NC 27708 USA
[3] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[4] Duke Sports Sci Inst, 3475 Erwin Rd,Wallace Bldg, Durham, NC 27710 USA
关键词
bacterial cellulose; cartilage; hydrogel; polyvinyl alcohol; DOUBLE-NETWORK HYDROGELS; POLY(VINYL ALCOHOL) HYDROGEL; HUMAN ARTICULAR-CARTILAGE; BACTERIAL CELLULOSE; BIOMECHANICAL PROPERTIES; OSTEOCHONDRAL GRAFTS; TENSILE PROPERTIES; SWELLING PRESSURE; ELASTIC-MODULUS; HIGH-STRENGTH;
D O I
10.1002/adfm.202003451
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article reports the first hydrogel with the strength and modulus of cartilage in both tension and compression, and the first to exhibit cartilage-equivalent tensile fatigue strength at 100 000 cycles. These properties are achieved by infiltrating a bacterial cellulose (BC) nanofiber network with a poly(vinyl alcohol) (PVA)-poly(2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt) (PAMPS) double network hydrogel. The BC provides tensile strength in a manner analogous to collagen in cartilage, while the PAMPS provides a fixed negative charge and osmotic restoring force similar to the role of aggrecan in cartilage. The hydrogel has the same aggregate modulus and permeability as cartilage, resulting in the same time-dependent deformation under confined compression. The hydrogel is not cytotoxic, has a coefficient of friction 45% lower than cartilage, and is 4.4 times more wear-resistant than a PVA hydrogel. The properties of this hydrogel make it an excellent candidate material for replacement of damaged cartilage.
引用
收藏
页数:8
相关论文
共 92 条
[1]   BIOMECHANICAL FUNCTION OF COLLAGEN FIBRIL ULTRASTRUCTURE OF ARTICULAR-CARTILAGE [J].
ASKEW, MJ ;
MOW, VC .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1978, 100 (03) :105-115
[2]   Arthroscopic osteochondral transplantation: Histologic results [J].
Barber, FA ;
Chow, JCY .
ARTHROSCOPY, 2001, 17 (08) :832-835
[3]   Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique [J].
Basser, PJ ;
Schneiderman, R ;
Bank, RA ;
Wachtel, E ;
Maroudas, A .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1998, 351 (02) :207-219
[4]   Study on the tribological properties of pHEMA hydrogels for use in artificial articular cartilage [J].
Bavaresco, V. P. ;
Zavaglia, C. A. C. ;
Reis, M. C. ;
Gomes, J. R. .
WEAR, 2008, 265 (3-4) :269-277
[5]   Validation of the Knee Injury and Osteoarthritis Outcome Score (KOOS) for the treatment of focal cartilage lesions [J].
Bekkers, J. E. J. ;
de Windt, Th. S. ;
Raijmakers, N. J. H. ;
Dhert, W. J. A. ;
Saris, D. B. F. .
OSTEOARTHRITIS AND CARTILAGE, 2009, 17 (11) :1434-1439
[6]  
BENEDICT J V, 1968, Journal of Biomechanics, V1, P53, DOI 10.1016/0021-9290(68)90038-9
[7]   Prosthetic inlay resurfacing for the treatment of focal, full thickness cartilage defects of the femoral condyle: a bridge between biologics and conventional arthroplasty [J].
Bollars, Peter ;
Bosquet, Marc ;
Vandekerckhove, Bruno ;
Hardeman, Francois ;
Bellemans, Johan .
KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2012, 20 (09) :1753-1759
[8]   Review of the biomechanics and biotribology of osteochondral grafts used for surgical interventions in the knee [J].
Bowland, Philippa ;
Ingham, E. ;
Jennings, Louise ;
Fisher, John .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2015, 229 (12) :879-888
[9]  
BROWN T D, 1984, Journal of Orthopaedic Research, V2, P190, DOI 10.1002/jor.1100020210
[10]  
Cartiva Incorporated, 2020, SUMM SAF EFF DAT