Gyrotropic response in the absence of a bias field

被引:90
作者
Wang, Zhiyu [1 ,2 ]
Wang, Zheng [1 ,3 ]
Wang, Jingyu [2 ]
Zhang, Bin [2 ]
Huangfu, Jiangtao [2 ]
Joannopoulos, John D. [1 ]
Soljacic, Marin [1 ]
Ran, Lixin [2 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Zhejiang Univ, Lab Appl Res Electromagnet, Hangzhou 310027, Zhejiang, Peoples R China
[3] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
nonreciprocal systems; magneto-optics; effective media; time-reversal-symmetry breaking; METAMATERIALS; CRYSTALS; INDEX;
D O I
10.1073/pnas.1210923109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electromagnetic materials lacking local time-reversal symmetry, such as gyrotropic materials, are of keen interest and importance both scientifically and technologically. Scientifically, topologically nontrivial phenomena, such as photonic chiral edge states, allow for reflection-free transport even in the presence of large disorder. Technologically, nonreciprocal photonic devices, such as optical isolators and circulators, play critical roles in optical communication and computing technologies because of their ability to eliminate cross-talk and feedback. Nevertheless, most known natural materials that lack local time-reversal symmetry require strong external fields and function only in a limited range of the electromagnetic spectrum. By taking advantage of metamaterials capable of translating the property of unidirectional active electronic circuits into effective dielectric response, we introduce a microwave gyrotropic metamaterial that does not require an external magnetic bias. Strong bulk Faraday-like effects, observed in both simulations and experiments, confirm nonreciprocity of the effective medium. This approach is scalable to many other wavelengths, and it also illustrates an opportunity to synthesize exotic electromagnetic materials.
引用
收藏
页码:13194 / 13197
页数:4
相关论文
共 30 条
[1]   Optical activity in planar chiral metamaterials: Theoretical study [J].
Bai, Benfeng ;
Svirko, Yuri ;
Turunen, Jari ;
Vallius, Tuomas .
PHYSICAL REVIEW A, 2007, 76 (02)
[2]   Active terahertz metamaterial devices [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Zide, Joshua M. O. ;
Gossard, Arthur C. ;
Taylor, Antoinette J. ;
Averitt, Richard D. .
NATURE, 2006, 444 (7119) :597-600
[3]   Extreme chirality in Swiss roll metamaterials [J].
Demetriadou, A. ;
Pendry, J. B. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (37)
[4]   Memory Metamaterials [J].
Driscoll, T. ;
Kim, Hyun-Tak ;
Chae, Byung-Gyu ;
Kim, Bong-Jun ;
Lee, Yong-Wook ;
Jokerst, N. Marie ;
Palit, S. ;
Smith, D. R. ;
Di Ventra, M. ;
Basov, D. N. .
SCIENCE, 2009, 325 (5947) :1518-1521
[5]   Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials [J].
Engheta, Nader .
SCIENCE, 2007, 317 (5845) :1698-1702
[6]   Wave and defect dynamics in nonlinear photonic quasicrystals [J].
Freedman, B ;
Bartal, G ;
Segev, M ;
Lifshitz, R ;
Christodoulides, DN ;
Fleischer, JW .
NATURE, 2006, 440 (7088) :1166-1169
[7]   Gold Helix Photonic Metamaterial as Broadband Circular Polarizer [J].
Gansel, Justyna K. ;
Thiel, Michael ;
Rill, Michael S. ;
Decker, Manuel ;
Bade, Klaus ;
Saile, Volker ;
von Freymann, Georg ;
Linden, Stefan ;
Wegener, Martin .
SCIENCE, 2009, 325 (5947) :1513-1515
[8]  
Gurevich A. G., 1996, MAGNETIZATION OSCILL
[9]   Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry [J].
Haldane, F. D. M. ;
Raghu, S. .
PHYSICAL REVIEW LETTERS, 2008, 100 (01)