Dirac cohomology of highest weight modules

被引:9
作者
Huang, Jing-Song [1 ]
Xiao, Wei [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
来源
SELECTA MATHEMATICA-NEW SERIES | 2012年 / 18卷 / 04期
关键词
Category O; Highest weight module; Dirac cohomology; Lie algebra cohomology; EULER NUMBER MULTIPLETS; N-COHOMOLOGY; REPRESENTATIONS; CONJECTURE; SUBGROUPS; BLOCKS;
D O I
10.1007/s00029-011-0085-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Dirac cohomology coincides with nilpotent Lie algebra (co)homology up to a twist of a one-dimensional character for simple highest weight modules. As a consequence, we determine the Dirac cohomology of simple highest weight modules explicitly.
引用
收藏
页码:803 / 824
页数:22
相关论文
共 22 条
[1]   Koszul duality patterns in representation theory [J].
Beilinson, A ;
Ginzburg, V ;
Soergel, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :473-527
[2]  
BERNSTEIN JH, 1976, FUNCT ANAL APPL, V10, P87
[3]   Kostant Modules in Blocks of Category OS [J].
Boe, Brian D. ;
Hunziker, Markus .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (01) :323-356
[4]   THE KAZHDAN-LUSZTIG CONJECTURE FOR GENERALIZED VERMA MODULES [J].
CASIAN, LG ;
COLLINGWOOD, DH .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (04) :581-600
[5]  
CASSELMAN W, 1975, COMPOS MATH, V31, P219
[7]   Jacquet modules and Dirac cohomology [J].
Dong, Chao-Ping ;
Huang, Jing-Song .
ADVANCES IN MATHEMATICS, 2011, 226 (04) :2911-2934
[8]  
ENRIGHT TJ, 1988, J REINE ANGEW MATH, V392, P27
[9]  
ENRIGHT TJ, 1987, MEM AM MATH SOC, V67, P94
[10]  
Huang J.-S., 2006, Math. Theory Appl, pxii+199