Direct fabrication of thin-film LiTi2(PO4)3 electrodes using the hydrothermal method

被引:3
作者
Liang, Yanjie [1 ,2 ]
Hisamo, Taro [1 ]
Sumi, Suguru [1 ]
Kamiike, Yuichiro [1 ]
Kuroda, Kensuke [1 ]
Okido, Masazumi [1 ]
机构
[1] Nagoya Univ, Inst Mat & Syst Sustainabil, Nagoya, Aichi, Japan
[2] Cent S Univ, Sch Met & Environm, Changsha, Hunan, Peoples R China
关键词
Hydrothermal method; Solid film electrode; LiTi2(PO4)(3); Ionic conductivity; LITHIUM TITANIUM PHOSPHATE; HIGH-RATE PERFORMANCE; LI-ION BATTERIES; ELECTROCHEMICAL PROPERTIES; SOLID ELECTROLYTES; ANODE MATERIAL; CONDUCTIVITY; LIFEPO4;
D O I
10.1016/j.ssi.2016.08.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the thin-film solid electrode LiTi2(PO4)(3) (LTP) was in-situ fabricated and sequentially deposited on a substrate using a hydrothermal method. The results suggest that crystals of the LTP film evolve from whisker clusters to cubes and that the crystalline region nucleates at the interface with the substrate and grows outwards. After a 48-hour reaction, the cubic-shaped LTP crystals formed a dense LTP film with few pores and peeling or flaking at the interface with the substrate. However, the cubic-shaped solid electrolyte is not favourable for charge transfer and Li+ ion diffusion, resulting in a poor ionic conductivity of approximately 1.0 x 10(-7) S/cm. Fortunately, the hydrothermal process offers a possible method for doping the Al3+ into the LTP film, and the ionic conductivity increases to as higher as 1.4 x 10(-3) S/cm as a result of the modified LW grain boundary. This study demonstrates that hydrothermal technology is a potential method for fabricating thin-film lithium battery materials. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 36 条
[1]   IONIC-CONDUCTIVITY OF THE LITHIUM TITANIUM PHOSPHATE (LI1+XALXTI2-X(PO4)3), (LI1+XSCXTI2-X(PO4)3), (LI1+XYXTI2-X(PO4)3), (LI1+XLAXTI2-X(PO4)3 SYSTEMS [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, GY .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (02) :590-591
[2]   ELECTRICAL PROPERTY AND SINTERABILITY OF LITI2(PO4)3 MIXED WITH LITHIUM SALT (LI3PO4 OR LI3BO3) [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
SOLID STATE IONICS, 1991, 47 (3-4) :257-264
[3]   IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) :1023-1027
[4]   Spark plasma sintering of LiTi2(PO4)3-based solid electrolytes [J].
Chang, CM ;
Lee, YI ;
Hong, SH ;
Park, HM .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2005, 88 (07) :1803-1807
[5]   Synthesis and Electrochemical Behavior of LiTi2(PO4)3 as Anode Materials for Aqueous Rechargeable Lithium Batteries [J].
Cui, Yongli ;
Hao, Yuwan ;
Bao, Wenjing ;
Shi, Yueli ;
Zhuang, Quanchao ;
Qiang, Yinghuai .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (01) :A53-A59
[6]   Shape-controlled syntheses of PbS submicro-/nano-crystals via hydrothermal method [J].
Ding, Bo ;
Shi, Minmin ;
Chen, Fei ;
Zhou, Renjia ;
Deng, Meng ;
Wang, Mang ;
Chen, Hongzheng .
JOURNAL OF CRYSTAL GROWTH, 2009, 311 (06) :1533-1538
[7]   Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K [J].
Dokko, Kaoru ;
Koizumi, Shohei ;
Nakano, Hiroyuki ;
Kanamura, Kiyoshi .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (45) :4803-4810
[8]   One-Step Hydrothermal Crystallization of a Layered Double Hydroxide/Alumina Bilayer Film on Aluminum and Its Corrosion Resistance Properties [J].
Guo, Xiaoxiao ;
Xu, Sailong ;
Zhao, Lili ;
Lu, Wei ;
Zhang, Fazhi ;
Evans, David G. ;
Duan, Xue .
LANGMUIR, 2009, 25 (17) :9894-9897
[9]   In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon [J].
Hatchard, TD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (06) :A838-A842
[10]   CRYSTAL-STRUCTURE OF K5NDLI2F10 [J].
HONG, HYP ;
MCCOLLUM, BC .
MATERIALS RESEARCH BULLETIN, 1979, 14 (01) :137-141