Eigenvalue Problem, Spin Systems, Lie Groups, and Parameter Dependence

被引:0
作者
Steeb, Willi-Hans [1 ]
Hardy, Yorick [2 ]
机构
[1] Univ Johannesburg, Int Sch Sci Comp, ZA-2006 Auckland Pk, South Africa
[2] Univ S Africa, Dept Math Sci, Johannesburg, South Africa
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2015年 / 70卷 / 08期
基金
新加坡国家研究基金会;
关键词
Eigenvalue Problems; Lie Groups; Spin Systems; DIFFERENTIATION;
D O I
10.1515/zna-2015-0139
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study square matrices F(alpha) over C with alpha is an element of R, where the eigenvalues depend on the parameter alpha but not the eigenvectors, and vice versa, where the eigenvectors depend on the parameter alpha but not the eigenvalues. We derive sufficient conditions for such properties. Applications to Lie groups and spin systems are provided. Both normal and nonnormal matrices are investigated.
引用
收藏
页码:605 / 609
页数:5
相关论文
共 18 条
[2]  
Bourbaki N., 1975, ELEMENTS MATH LIE GR
[3]  
Bump D., 2000, LIE GROUPS
[4]  
GILMORE R, 2008, LIE GROUPS LIE ALGEB
[5]  
Helgason S, 2001, GRADUATE STUDIES MAT
[6]   EXPANSION OF A FUNCTION OF NONCOMMUTING OPERATORS [J].
KUMAR, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (12) :1923-&
[7]  
Louisell W.H., 1973, Quantum Statistical Properties of Radiation
[8]  
Steeb W. H., 1988, Foundations of Physics Letters, V1, P147, DOI 10.1007/BF00661855
[9]  
Steeb W.-H., 2015, Bose, Spin and Fermi Systems: Problems and Solutions
[10]  
Steeb W.H., 2007, CONTINUOUS SYMMETRIE, V2nd