Assessment of Aerosol Modes Used in the MODIS Ocean Aerosol Retrieval

被引:4
|
作者
Wang, Jiacheng [1 ]
Zhao, Qiang [2 ,3 ]
Cui, Shengcheng [2 ,3 ]
Zhu, Chengjie [2 ,3 ]
机构
[1] Fuyang Univ, Coll Phys & Elect Informat, Fuyang 236037, Peoples R China
[2] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Key Lab Gen Opt Calibrat & Characterizat Tech, Hefei, Peoples R China
[3] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Remote Sensing Lab, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
IMAGING SPECTRORADIOMETER MODIS; OPTICAL-PROPERTIES; AERONET; NETWORK; SUN; SCATTERING; ALGORITHM;
D O I
10.1175/JAS-D-12-051.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Coastal and island Aerosol Robotic Network (AERONET) sites are used to determine characteristic aerosol modes over marine environments. They are compared with the assumed modes used in the operational Moderate Resolution Imaging Spectroradiometer (MODIS) ocean aerosol algorithm, and the results show that 1) the standard deviation values of three fine aerosol modes (0.6) and one dustlike aerosol mode (0.8) are much higher than the corresponding statistical AERONET modal values (0.45 and 0.6, respectively.). The values of three sea salt aerosol modes (0.6) are somewhat lower than the corresponding statistical AERONET modal value (0.675). 2) The number median radius of the current fine and dustlike aerosol modes cannot span the dynamic range of corresponding aerosol distribution properly. 3) AERONET products show that the standard deviation and the number median radius exhibit an obvious negative correlation, especially for sea salt and dustlike aerosol modes. According to this, a refinement of the current aerosol modes is made. These revised modes are used in a version of the MODIS retrieval over ocean. Compared with the current aerosol modes: 1) more retrieved aerosol optical depths (AODs) from the revised aerosol modes lie within the expected error bars and 2) the linear regression lines of the retrievals from the revised aerosol modes and AERONET are closer to the 1:1 line.
引用
收藏
页码:3595 / 3605
页数:11
相关论文
共 50 条
  • [41] Retrieval of Aerosol Single-Scattering Albedo from MODIS Data Using an Artificial Neural Network
    Qi, Lin
    Liu, Ronggao
    Liu, Yang
    REMOTE SENSING, 2022, 14 (24)
  • [42] Collocation mismatch uncertainties in satellite aerosol retrieval validation
    Virtanen, Timo H.
    Kolmonen, Pekka
    Sogacheva, Larisa
    Rodriguez, Edith
    Saponaro, Giulia
    de Leeuw, Gerrit
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (02) : 925 - 938
  • [43] Validation and Accuracy Assessment of MODIS C6.1 Aerosol Products over the Heavy Aerosol Loading Area
    Tian, Xinpeng
    Gao, Zhiqiang
    ATMOSPHERE, 2019, 10 (09)
  • [44] Aerosol Retrieval from Dual-wavelength Polarization Lidar Measurements over Tropical Pacific Ocean and Validation of a Global Aerosol Transport Model
    Nishizawa, T.
    Sugimoto, N.
    Matsui, I.
    Shimizu, A.
    Takemura, T.
    Okamoto, H.
    CURRENT PROBLEMS IN ATMOSPHERIC RADIATION (IRS 2008), 2009, 1100 : 303 - 306
  • [45] Accuracy assessment of Terra-MODIS aerosol optical depth retrievals
    Safarpour, Sahabeh
    Abdullah, Khiruddin
    San Lim, Hwee
    Dadras, Mohsen
    7TH IGRSM INTERNATIONAL REMOTE SENSING & GIS CONFERENCE AND EXHIBITION, 2014, 20
  • [46] RETRIEVAL OF AEROSOL OPTICAL DEPTH OVER URBAN AREAS USING TERRA/MODIS DATA
    Zhang, X. Q.
    Yang, L. P.
    Yamaguchi, Y.
    NETWORKING THE WORLD WITH REMOTE SENSING, 2010, 38 : 374 - 379
  • [47] The impact of aerosol on MODIS cloud detection and property retrieval in seriously polluted East China
    Zhang, Xiao
    Wang, Hong
    Che, Hui-Zheng
    Tan, Sai-Chun
    Shi, Guang-Yu
    Yao, Xiu-Ping
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 711 (711)
  • [48] Assessment of Langley and NASA-GISS Calibration Techniques for MFRSR Aerosol Retrieval
    Vladutescu, Daniela Viviana
    Madhavan, Bomidi Lakshmi
    Gross, Barry M.
    Aguirre, Antonio
    Moshary, Fred
    Ahmed, Samir A.
    Razani, Mohammad
    Blake, Reginald A.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (09): : 5880 - 5894
  • [49] Detection of Optically Thin Mineral Dust Aerosol Layers over the Ocean Using MODIS
    Cho, Hyoun-Myoung
    Nasiri, Shaima L.
    Yang, Ping
    Laszlo, Istvan
    Zhao, Xuepeng 'Tom'
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2013, 30 (05) : 896 - 916
  • [50] Machine learning based aerosol and ocean colorjoint retrieval algorithm for multianglepolarimeters over coastal waters
    Aryal, Kamal
    Zhai, Peng-Wang
    Gao, Meng
    Franz, Bryan A.
    Knobelspiesse, Kirk
    Hu, Yongxiang
    OPTICS EXPRESS, 2024, 32 (17): : 29921 - 29942