Stabilizing a Class of Chaotic Systems by Using Adaptive Feedback Control

被引:2
作者
Wang, Dejin [1 ]
Zheng, Yongai [1 ]
机构
[1] Yangzhou Univ, Coll Informat Engn, Yangzhou 225009, Peoples R China
来源
INTERNATIONAL CONFERENCE ON APPLIED PHYSICS AND INDUSTRIAL ENGINEERING 2012, PT C | 2012年 / 24卷
关键词
Controlling chaos; Lipschitz condition; Adaptive feedback control; Lorenz system; IMPULSIVE CONTROL; SYNCHRONIZATION; MODEL;
D O I
10.1016/j.phpro.2012.02.283
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, an adaptive feedback control method is presented to stabilize a class of chaotic systems, the structural function of whose is not necessarily to satisfy the Lipsichtz conditions, but bounded by a polynomial of the infinity norm of the system state with the gains unknown. The adaptive feedback controller uses a simple polynomial function of the system state, moreover only one component in each dimension. To check the theoretical results, we try to stabilize the Lorenz system on numerical simulations. This paper generalizes the Huang's result [Phys. Rev. Lett. 93(2004) 214101-1]. (C) 2011 Published by Elsevier B.V. Selection and/or peer-review under responsibility of ICAPIE Organization Committee.
引用
收藏
页码:1922 / 1927
页数:6
相关论文
共 12 条
[1]  
Chen G., 1998, CHAOS ORDER METHODOL
[2]   On time-delayed feedback control of chaotic systems [J].
Chen, GR ;
Yu, XH .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (06) :767-772
[3]  
Ercan S., 2001, PHYS LETT A, V279, P47
[4]   Modification for collection of master-slave synchronized chaotic systems [J].
Guo, Rongwei ;
Li, Gang .
CHAOS SOLITONS & FRACTALS, 2009, 40 (01) :453-457
[5]   Stabilizing near-nonhyperbolic chaotic systems with applications [J].
Huang, DB .
PHYSICAL REVIEW LETTERS, 2004, 93 (21)
[6]   Identifying parameter by identical synchronization between different systems [J].
Huang, DB ;
Guo, RW .
CHAOS, 2004, 14 (01) :152-159
[7]  
Nayfeh A.H., 1994, APPL NONLINEAR DYNAM
[8]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[9]   Impulsive control of Lorenz system [J].
Yang, T ;
Yang, LB ;
Yang, CM .
PHYSICA D, 1997, 110 (1-2) :18-24
[10]   Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication [J].
Yang, T ;
Chua, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (10) :976-988