Fuzzy Stability Results of Finite Variable Additive Functional Equation: Direct and Fixed Point Methods

被引:9
作者
Alanazi, Abdulaziz M. [1 ]
Muhiuddin, G. [1 ]
Tamilvanan, K. [2 ]
Alenze, Ebtehaj N. [1 ]
Ebaid, Abdelhalim [1 ]
Loganathan, K. [3 ]
机构
[1] Univ Tabuk, Dept Math, Tabuk 71491, Saudi Arabia
[2] Govt Arts Coll Men, Dept Math, Krishnagiri 635001, Tamil Nadu, India
[3] Karpagam Acad Higher Educ, Fac Engn, Dept Math, Coimbatore 641021, Tamil Nadu, India
关键词
additive functional equation; fixed point; Hyers-Ulam Stability; fuzzy normed space; APPROXIMATELY LINEAR MAPPINGS;
D O I
10.3390/math8071050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this current work, we introduce the finite variable additive functional equation and we derive its solution. In fact, we investigate the Hyers-Ulam stability results for the finite variable additive functional equation in fuzzy normed space by two different approaches of direct and fixed point methods.
引用
收藏
页数:14
相关论文
共 47 条
[1]   Fuzzy bounded linear operators [J].
Bag, T ;
Samanta, SK .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :513-547
[2]  
Bag T., 2003, The Journal of Fuzzy Mathematics, V11, P687
[3]  
Cheng S.C., 1994, B CALCUTTA MATH SOC, V86, P429
[4]   A FIXED POINT THEOREM OF ALTERNATIVE FOR CONTRACTIONS ON A GENERALIZED COMPLETE METRIC SPACE [J].
DIAZ, JB ;
MARGOLIS, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (02) :305-&
[5]   FINITE DIMENSIONAL FUZZY NORMED LINEAR-SPACE [J].
FELBIN, C .
FUZZY SETS AND SYSTEMS, 1992, 48 (02) :239-248
[6]  
Gajda Z., 1991, Int J Math Math Sci, V14, P431, DOI DOI 10.1155/IJMM.V14.3
[7]  
Hyers D.H., 1998, STABILITY FUNCTIONAL
[8]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[9]  
Jun KW, 2005, J COMPUT ANAL APPL, V7, P21
[10]   The generalized Hyers-Ulam-Rassias stability of a cubic functional equation [J].
Jun, KW ;
Kim, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 274 (02) :867-878