Madelung, Gross-Pitaevskii and Korteweg

被引:61
作者
Carles, Remi [1 ,2 ]
Danchin, Raphael [3 ]
Saut, Jean-Claude [4 ,5 ]
机构
[1] CNRS, F-34095 Montpellier, France
[2] Univ Montpellier 2, UMR 5149, F-34095 Montpellier, France
[3] Univ Paris EST, LAMA UMR CNRS 8050, F-94010 Creteil, France
[4] Univ Paris 11, Math Lab, UMR 8628, F-91405 Orsay, France
[5] CNRS, F-91405 Orsay, France
关键词
NONLINEAR SCHRODINGER-EQUATIONS; CAUCHY-PROBLEM; SEMICLASSICAL LIMIT; TRAVELING-WAVES; SPACE DIMENSIONS; SMOOTH SOLUTIONS; EULER EQUATIONS; WELL-POSEDNESS; INFINITY; SYSTEM;
D O I
10.1088/0951-7715/25/10/2843
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper surveys various aspects of the hydrodynamic formulation of the nonlinear Schrodinger equation obtained via the Madelung transform in connection to models of quantum hydrodynamics and to compressible fluids of the Korteweg type.
引用
收藏
页码:2843 / 2873
页数:31
相关论文
共 51 条
[1]   WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity [J].
Alazard, Thomas ;
Carles, Remi .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (03) :959-977
[3]  
[Anonymous], 1990, The analysis of linear partial differential operators
[4]  
[Anonymous], 1997, Applied Math. Sci.
[5]  
[Anonymous], 1986, Japan J. Appl. Math, DOI DOI 10.1007/BF03167100
[6]   The Quantum Hydrodynamics System in Two Space Dimensions [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (02) :499-527
[7]   On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) :657-686
[8]  
Audiard C, 2012, SIAM J MATH IN PRESS
[9]   Numerical study of time-splitting spectral discretizations of nonlinear Schrodinger equations in the semiclassical regimes [J].
Bao, WZ ;
Jin, S ;
Markowich, PA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (01) :27-64
[10]   On the well-posedness for the Euler-Korteweg model in several space dimensions [J].
Benzoni-Gavage, S. ;
Danchin, R. ;
Descombes, S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) :1499-1579