Quantum teleportation and entanglement distribution over 100-kilometre free-space channels

被引:424
作者
Yin, Juan [1 ,2 ]
Ren, Ji-Gang [1 ,2 ]
Lu, He [1 ,2 ]
Cao, Yuan [1 ,2 ]
Yong, Hai-Lin [1 ,2 ]
Wu, Yu-Ping [1 ,2 ]
Liu, Chang [1 ,2 ]
Liao, Sheng-Kai [1 ,2 ]
Zhou, Fei [1 ,2 ]
Jiang, Yan [1 ,2 ]
Cai, Xin-Dong [1 ,2 ]
Xu, Ping [1 ,2 ]
Pan, Ge-Sheng [1 ,2 ]
Jia, Jian-Jun [3 ]
Huang, Yong-Mei [4 ]
Yin, Hao [1 ,2 ]
Wang, Jian-Yu [3 ]
Chen, Yu-Ao [1 ,2 ]
Peng, Cheng-Zhi [1 ,2 ]
Pan, Jian-Wei [1 ,2 ]
机构
[1] Univ Sci & Technol China, Natl Lab Phys Sci Microscale, Shanghai Branch, Shanghai 201315, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Shanghai 201315, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
[4] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-FIDELITY TRANSMISSION; QUBITS; STATE;
D O I
10.1038/nature11332
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation(1,2) and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics(3,4). Although quantum teleportation(5,6) and entanglement distribution(7-9) over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters(10) for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging(11). Free-space channels, first used for quantum key distribution(12,13), offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel(16). Most recently, following a modified scheme(17), free-space quantum teleportation over 16 kilometres was demonstrated(18) with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 +/- 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality(4) is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high-frequency and high-accuracy acquiring, pointing and tracking technique developed in our experiment can be directly used for future satellite-based quantum communication and large-scale tests of quantum foundations.
引用
收藏
页码:185 / 188
页数:4
相关论文
共 23 条
[1]   Long-distance free-space distribution of quantum entanglement [J].
Aspelmeyer, M ;
Böhm, HR ;
Gyatso, T ;
Jennewein, T ;
Kaltenbaek, R ;
Lindenthal, M ;
Molina-Terriza, G ;
Poppe, A ;
Resch, K ;
Taraba, M ;
Ursin, R ;
Walther, P ;
Zeilinger, A .
SCIENCE, 2003, 301 (5633) :621-623
[2]  
Bell J. S., 1964, Physics, V1, P195, DOI [10.1103/physicsphysiquefizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[3]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[4]   Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels [J].
Boschi, D ;
Branca, S ;
De Martini, F ;
Hardy, L ;
Popescu, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (06) :1121-1125
[5]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[6]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[7]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[8]   Efficient entanglement distribution over 200 kilometers [J].
Dynes, J. F. ;
Takesue, H. ;
Yuan, Z. L. ;
Sharpe, A. W. ;
Harada, K. ;
Honjo, T. ;
Kamada, H. ;
Tadanaga, O. ;
Nishida, Y. ;
Asobe, M. ;
Shields, A. J. .
OPTICS EXPRESS, 2009, 17 (14) :11440-11449
[9]   High-fidelity transmission of entanglement over a high-loss free-space channel [J].
Fedrizzi, Alessandro ;
Ursin, Rupert ;
Herbst, Thomas ;
Nespoli, Matteo ;
Prevedel, Robert ;
Scheidl, Thomas ;
Tiefenbacher, Felix ;
Jennewein, Thomas ;
Zeilinger, Anton .
NATURE PHYSICS, 2009, 5 (06) :389-392
[10]   High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber [J].
Huebel, Hannes ;
Vanner, Michael R. ;
Lederer, Thomas ;
Blauensteiner, Bibiane ;
Loruenser, Thomas ;
Poppe, Andreas ;
Zeilinger, Anton .
OPTICS EXPRESS, 2007, 15 (12) :7853-7862