A self-stabilizing algorithm for optimally efficient sets in graphs

被引:8
作者
Hedetniemi, Sandra M. [2 ]
Hedetniemi, Stephen T. [2 ]
Jiang, Hao [2 ]
Kennedy, K. E. [1 ]
McRae, Alice A. [3 ]
机构
[1] So Wesleyan Univ, Dept Comp Sci, Central, SC 29630 USA
[2] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
[3] Appalachian State Univ, Dept Comp Sci, Boone, NC 28608 USA
关键词
Self-stabilizing algorithms; Graph algorithms; Optimally efficient set;
D O I
10.1016/j.ipl.2012.02.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The efficiency of a set S subset of V in a graph G = (V, E), is defined as epsilon(S) = vertical bar{v is an element of V - S: vertical bar N(v) boolean AND S vertical bar = }vertical bar 1; in other words, the efficiency of a set S equals the number of vertices in V - S that are adjacent to exactly one vertex in S. A set S is called optimally efficient if for every vertex v is an element of V - S, epsilon(S boolean OR {v}) <= epsilon(S), and for every vertex u is an element of S, epsilon(S - {u}) < epsilon(S). We present a polynomial time self-stabilizing algorithm for finding an optimally efficient set in an arbitrary graph. This algorithm is designed using the distance-2 self-stabilizing model of computation. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:621 / 623
页数:3
相关论文
共 9 条
[1]  
[Anonymous], 1993, J COMBINATORICS INFO
[2]  
Bange D., 1988, APPL DISCRETE MATH, P189
[3]   EFFICIENT SETS IN GRAPHS [J].
BERNHARD, PJ ;
HEDETNIEMI, ST ;
JACOBS, DP .
DISCRETE APPLIED MATHEMATICS, 1993, 44 (1-3) :99-108
[4]  
Farley A.M., 1983, C NUMER, V38, P47
[5]  
Gairing M., 2004, Parallel Processing Letters, V14, P387, DOI DOI 10.1142/S0129626404001970
[6]   Distance-k knowledge in self-stabilizing algorithms [J].
Goddard, Wayne ;
Hedetniemi, Stephen T. ;
Jacobs, David P. ;
Trevisan, Vilmar .
THEORETICAL COMPUTER SCIENCE, 2008, 399 (1-2) :118-127
[7]  
Goddard W, 2006, LECT NOTES COMPUT SC, V4056, P349
[8]  
Haynes T.W., 1998, Chapman & Hall/CRC Pure and Applied Mathematics
[9]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]