Genomic-Enabled Prediction Based on Molecular Markers and Pedigree Using the Bayesian Linear Regression Package in R

被引:161
作者
Perez, Paulino [1 ,2 ]
de los Campos, Gustavo [3 ]
Crossa, Jose [1 ]
Gianola, Daniel [4 ]
机构
[1] Int Maize & Wheat Improvement Ctr CIMMYT, Mexico City, DF, Mexico
[2] Colegio Postgrad, Montecillo 56230, Estado De Mexic, Mexico
[3] Univ Alabama Birmingham, Sect Stat Genet, Birmingham, AL 35294 USA
[4] Univ Wisconsin, Madison, WI 53706 USA
关键词
QUANTITATIVE TRAITS; SELECTION; INFORMATION;
D O I
10.3835/plantgenome2010.04.0005
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The availability of dense molecular markers has made possible the use of genomic selection in plant and animal breeding. However, models for genomic selection pose several computational and statistical challenges and require specialized computer programs, not always available to the end user and not implemented in standard statistical software yet. The R-package BLR (Bayesian Linear Regression) implements several statistical procedures (e. g., Bayesian Ridge Regression, Bayesian LASSO) in a unified framework that allows including marker genotypes and pedigree data jointly. This article describes the classes of models implemented in the BLR package and illustrates their use through examples. Some challenges faced when applying genomic-enabled selection, such as model choice, evaluation of predictive ability through cross-validation, and choice of hyperparameters, are also addressed.
引用
收藏
页码:106 / 116
页数:11
相关论文
共 21 条
  • [11] Genomic selection in plant breeding: from theory to practice
    Jannink, Jean-Luc
    Lorenz, Aaron J.
    Iwata, Hiroyoshi
    [J]. BRIEFINGS IN FUNCTIONAL GENOMICS, 2010, 9 (02) : 166 - 177
  • [12] The international rice information system. a platform for meta-analysis of rice crop data
    McLaren, CG
    Bruskiewich, RM
    Portugal, AM
    Cosico, AB
    [J]. PLANT PHYSIOLOGY, 2005, 139 (02) : 637 - 642
  • [13] Meuwissen THE, 2001, GENETICS, V157, P1819
  • [14] The Bayesian Lasso
    Park, Trevor
    Casella, George
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 681 - 686
  • [15] R Core Team, 2020, R foundation for statistical computing Computer software
  • [16] Bayesian measures of model complexity and fit
    Spiegelhalter, DJ
    Best, NG
    Carlin, BR
    van der Linde, A
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 : 583 - 616
  • [18] Invited review: Reliability of genomic predictions for North American Holstein bulls
    VanRaden, P. M.
    Van Tassell, C. P.
    Wiggans, G. R.
    Sonstegard, T. S.
    Schnabel, R. D.
    Taylor, J. F.
    Schenkel, F. S.
    [J]. JOURNAL OF DAIRY SCIENCE, 2009, 92 (01) : 16 - 24
  • [19] Predictive ability of direct genomic values for lifetime net merit of Holstein sires using selected subsets of single nucleotide polymorphism markers
    Weigel, K. A.
    de los Campos, G.
    Gonzalez-Recio, O.
    Naya, H.
    Wu, X. L.
    Long, N.
    Rosa, G. J. M.
    Gianola, D.
    [J]. JOURNAL OF DAIRY SCIENCE, 2009, 92 (10) : 5248 - 5257
  • [20] Wright S, 1921, GENETICS, V6, P111