Genomic-Enabled Prediction Based on Molecular Markers and Pedigree Using the Bayesian Linear Regression Package in R

被引:161
作者
Perez, Paulino [1 ,2 ]
de los Campos, Gustavo [3 ]
Crossa, Jose [1 ]
Gianola, Daniel [4 ]
机构
[1] Int Maize & Wheat Improvement Ctr CIMMYT, Mexico City, DF, Mexico
[2] Colegio Postgrad, Montecillo 56230, Estado De Mexic, Mexico
[3] Univ Alabama Birmingham, Sect Stat Genet, Birmingham, AL 35294 USA
[4] Univ Wisconsin, Madison, WI 53706 USA
关键词
QUANTITATIVE TRAITS; SELECTION; INFORMATION;
D O I
10.3835/plantgenome2010.04.0005
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The availability of dense molecular markers has made possible the use of genomic selection in plant and animal breeding. However, models for genomic selection pose several computational and statistical challenges and require specialized computer programs, not always available to the end user and not implemented in standard statistical software yet. The R-package BLR (Bayesian Linear Regression) implements several statistical procedures (e. g., Bayesian Ridge Regression, Bayesian LASSO) in a unified framework that allows including marker genotypes and pedigree data jointly. This article describes the classes of models implemented in the BLR package and illustrates their use through examples. Some challenges faced when applying genomic-enabled selection, such as model choice, evaluation of predictive ability through cross-validation, and choice of hyperparameters, are also addressed.
引用
收藏
页码:106 / 116
页数:11
相关论文
共 21 条
  • [1] Prospects for genomewide selection for quantitative traits in maize
    Bernardo, Rex
    Yu, Jianming
    [J]. CROP SCIENCE, 2007, 47 (03) : 1082 - 1090
  • [2] Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers
    Crossa, Jose
    de los Campos, Gustavo
    Perez, Paulino
    Gianola, Daniel
    Burgueno, Juan
    Luis Araus, Jose
    Makumbi, Dan
    Singh, Ravi P.
    Dreisigacker, Susanne
    Yan, Jianbing
    Arief, Vivi
    Banziger, Marianne
    Braun, Hans-Joachim
    [J]. GENETICS, 2010, 186 (02) : 713 - U406
  • [3] de los Campos G., 2010, BLR: Bayesian linear regression
  • [4] Predicting Quantitative Traits With Regression Models for Dense Molecular Markers and Pedigree
    de los Campos, Gustavo
    Naya, Hugo
    Gianola, Daniel
    Crossa, Jose
    Legarra, Andres
    Manfredi, Eduardo
    Weigel, Kent
    Cotes, Jose Miguel
    [J]. GENETICS, 2009, 182 (01) : 375 - 385
  • [5] Fisher RA., 1918, T ROY SOC EDINBURGH, V52, P399, DOI DOI 10.1017/S0080456800012163
  • [6] Additive Genetic Variability and the Bayesian Alphabet
    Gianola, Daniel
    de los Campos, Gustavo
    Hill, William G.
    Manfredi, Eduardo
    Fernando, Rohan
    [J]. GENETICS, 2009, 183 (01) : 347 - 363
  • [7] Genomic selection
    Goddard, M. E.
    Hayes, B. J.
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2007, 124 (06) : 323 - 330
  • [8] The impact of genetic relationship information on genome-assisted breeding values
    Habier, D.
    Fernando, R. L.
    Dekkers, J. C. M.
    [J]. GENETICS, 2007, 177 (04) : 2389 - 2397
  • [9] Invited review: Genomic selection in dairy cattle: Progress and challenges
    Hayes, B. J.
    Bowman, P. J.
    Chamberlain, A. J.
    Goddard, M. E.
    [J]. JOURNAL OF DAIRY SCIENCE, 2009, 92 (02) : 433 - 443
  • [10] BEST LINEAR UNBIASED ESTIMATION AND PREDICTION UNDER A SELECTION MODEL
    HENDERSON, CR
    [J]. BIOMETRICS, 1975, 31 (02) : 423 - 447