Maximizing Spectral Efficiency for High Mobility Systems with Imperfect Channel State Information

被引:42
作者
Sun, Ning [1 ]
Wu, Jingxian [1 ]
机构
[1] Univ Arkansas, Dept Elect Engn, Fayetteville, AR 72701 USA
基金
美国国家科学基金会;
关键词
High mobility communications; imperfect channel state information; channel estimation error; spectral efficiency; FADING CHANNELS; OFDM; DESIGN;
D O I
10.1109/TWC.2014.012314.130772
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies the optimum system design that can maximize the spectral efficiency of high mobility wireless communication systems with imperfect channel state information (CSI). The fast time-varying fading in high mobility systems can be tracked with pilot-assisted channel estimation. The percentage of pilot symbols in the transmitted symbols plays a critical role on the system performance: a higher pilot percentage yields a more accurate channel estimation, but also more overhead. The effects of pilot percentage are quantified through the derivation of the channel estimation mean squared error (MSE), which is expressed as a closed-form expression of various system parameters through asymptotic analysis. It is discovered that, if the pilots sample the channel above its Nyquist rate, then the estimation of the channel coefficients of data symbols through temporal interpolation yields the same asymptotic MSE as the direct estimation of the channel coefficients of the pilot symbols. Based on the statistical properties of the channel estimation error, we quantify the impacts of the imperfect CSI on the system performance by developing the analytical symbol error rate (SER) and a spectral efficiency lower bound of the communication system. The optimum pilot percentage that can maximize the spectral efficiency lower bound is identified through both analytical and simulation results.
引用
收藏
页码:1462 / 1470
页数:9
相关论文
共 18 条