Small time two-sided LIL behavior for L,vy processes at zero

被引:13
作者
Savov, Mladen [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
Levy process; LIL behavior; Norming functions; ITERATED LOGARITHM; UNIVERSAL LAW;
D O I
10.1007/s00440-008-0142-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We wish to characterize when a L,vy process X (t) crosses boundaries b(t), in a two-sided sense, for small times t, where b(t) satisfies very mild conditions. An integral test is furnished for computing the value of sup (t -> 0)|X (t) |/b(t) = c. In some cases, we also specify a function b(t) in terms of the L,vy triplet, such that sup (t -> 0) |X (t) |/b(t) = 1.
引用
收藏
页码:79 / 98
页数:20
相关论文
共 14 条
[1]  
Bertoin J., 1996, Levy Processes
[2]  
BERTOIN J, 2007, ANN PROBAB IN PRESS
[3]  
Blumenthal R. M., 1961, J MATH MECH, V10, P492
[4]  
BUCHMANN B, 2006, ALSMOST SUR IN PRESS
[5]  
Chow YS., 1978, Probability theory independenceinterchangeabilitymartingales
[6]  
Doney RA., 2007, Fluctuation Theory for Lvy Processes
[7]   Some results on two-sided LIL behavior [J].
Einmahl, U ;
Deli, L .
ANNALS OF PROBABILITY, 2005, 33 (04) :1601-1624
[8]   SUMS OF INDEPENDENT RANDOM VARIABLES WITHOUT MOMENT CONDITIONS [J].
KESTEN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (03) :701-&
[9]  
Khintchine A., 1939, Izvestia Akad. Nauk SSSR, V1939, P487
[10]   TOWARD A UNIVERSAL LAW OF ITERATED LOGARITHM .2. [J].
KLASS, MJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 39 (02) :151-165