Lattice gauge theories and spin models

被引:19
作者
Mathur, Manu [1 ]
Sreeraj, T. P. [1 ]
机构
[1] SN Bose Natl Ctr Basic Sci, JD Block,Sect 3, Kolkata 700098, India
关键词
2-DIMENSIONAL ISING-MODEL; YANG-MILLS THEORY; PHASE-TRANSITIONS; DUALITY; SYSTEMS; SU(2); LOOP; CONFINEMENT; MONOPOLES; STATISTICS;
D O I
10.1103/PhysRevD.94.085029
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Wegner Z(2) gauge theory-Z(2) Ising spin model duality in (2 + 1) dimensions is revisited and derived through a series of canonical transformations. The Kramers-Wannier duality is similarly obtained. The Wegner Z(2) gauge-spin duality is directly generalized to SU(N) lattice gauge theory in (2 + 1) dimensions to obtain the SU(N) spin model in terms of the SU(N) magnetic fields and their conjugate SU(N) electric scalar potentials. The exact and complete solutions of the Z(2), U(1), SU(N) Gauss law constraints in terms of the corresponding spin or dual potential operators are given. The gauge-spin duality naturally leads to a new gauge invariant magnetic disorder operator for SU(N) lattice gauge theory which produces a magnetic vortex on the plaquette. A variational ground state of the SU(2) spin model with nearest neighbor interactions is constructed to analyze SU(2) gauge theory.
引用
收藏
页数:26
相关论文
共 67 条
[1]   DUALITY TRANSFORMATION FOR NON-ABELIAN LATTICE GAUGE-THEORIES [J].
ANISHETTY, R ;
SHARATCHANDRA, HS .
PHYSICAL REVIEW LETTERS, 1990, 65 (07) :813-815
[2]   Dual gluons and monopoles in 2+1 dimensional Yang-Mills theory [J].
Anishetty, R ;
Majumdar, P ;
Sharatchandra, HS .
PHYSICS LETTERS B, 2000, 478 (1-3) :373-378
[3]  
[Anonymous], APPL MATH SERIES US
[4]   On the definition of entanglement entropy in lattice gauge theories [J].
Aoki, Sinya ;
Iritani, Takumi ;
Nozaki, Masahiro ;
Numasawa, Tokiro ;
Shiba, Nobura ;
Tasaki, Hal .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (06)
[5]   VARIATIONAL INVESTIGATION OF THE MASS-SPECTRUM IN 2+1 DIMENSIONAL SU(2) LATTICE GAUGE-THEORY [J].
ARISUE, H .
PROGRESS OF THEORETICAL PHYSICS, 1990, 84 (05) :951-960
[6]   PHASE-TRANSITIONS IN ABELIAN LATTICE GAUGE THEORIES [J].
BANKS, T ;
MYERSON, R ;
KOGUT, J .
NUCLEAR PHYSICS B, 1977, 129 (03) :493-510
[7]   Entanglement entropy in gauge theories and the holographic principle for electric strings [J].
Buividovich, P. V. ;
Polikarpov, M. I. .
PHYSICS LETTERS B, 2008, 670 (02) :141-145
[8]   The basis of the physical Hilbert space of lattice gauge theories [J].
Burgio, G ;
De Pietri, R ;
Morales-Técotl, HA ;
Urrutia, LF ;
Vergara, JD .
NUCLEAR PHYSICS B, 2000, 566 (03) :547-561
[9]   Color confinement and dual superconductivity of the vacuum. III [J].
Carmona, JM ;
D'Elia, M ;
Di Giacomo, A ;
Lucini, B ;
Paffuti, G .
PHYSICAL REVIEW D, 2001, 64 (11)
[10]   HIGGS MECHANISM AND QUARK CONFINEMENT [J].
CREUTZ, M .
PHYSICAL REVIEW D, 1974, 10 (08) :2696-2699