On approximated ILU and UGS preconditioning methods for linearized discretized steady incompressible Navier-Stokes equations

被引:5
作者
Bai, Zhong-Zhi [1 ]
Ran, Yu-Hong [1 ]
Yuan, Li [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Sci Engn Comp, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
Incompressible Navier-Stokes equations; Artificial compressibility method; Upwind compact finite difference scheme; Preconditioning; Krylov subspace method; HERMITIAN SPLITTING METHODS; BLOCK SSOR PRECONDITIONERS; NUMERICAL SOLUTION; ITERATION METHODS; SYSTEMS; ALGORITHM; MATRICES; GMRES; FORM;
D O I
10.1007/s11075-013-9694-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When the artificial compressibility method in conjunction with high-order upwind compact finite difference schemes is employed to discretize the steady-state incompressible Navier-Stokes equations, in each pseudo-time step we need to solve a structured system of linear equations approximately by, for example, a Krylov subspace method such as the preconditioned GMRES. In this paper, based on the special structure and concrete property of the linear system we construct a structured preconditioner for its coefficient matrix and estimate eigenvalue bounds of the correspondingly preconditioned matrix. Numerical examples are given to illustrate the effectiveness of the proposed preconditioning methods.
引用
收藏
页码:43 / 68
页数:26
相关论文
共 33 条
[1]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[2]  
Bai Z. Z., 1993, Numer. Math. J. Univ, V2, P87
[3]  
Bai ZZ, 2007, IMA J NUMER ANAL, V27, P1, DOI [10.1093/imanum/dr1017, 10.1093/imanum/drl017]
[4]   Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks [J].
Bai, Zhong-Zhi .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) :295-306
[5]   Modified incomplete orthogonal factorization methods using Givens rotations [J].
Bai, Zhong-Zhi ;
Yin, Jun-Feng .
COMPUTING, 2009, 86 (01) :53-69
[6]   CONSTRAINT PRECONDITIONERS FOR SYMMETRIC INDEFINITE MATRICES [J].
Bai, Zhong-Zhi ;
Ng, Michael K. ;
Wang, Zeng-Qi .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) :410-433
[7]  
Bai ZZ, 2006, MATH COMPUT, V75, P791, DOI 10.1090/S0025-5718-05-01801-6
[8]   Block triangular and skew-Hermitian splitting methods for positive-definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Lu, LZ ;
Yin, JF .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (03) :844-863
[9]   Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Pan, JY .
NUMERISCHE MATHEMATIK, 2004, 98 (01) :1-32
[10]   Preconditioners for nonsymmetric block Toeplitz-like-plus-diagonal linear systems [J].
Bai, ZZ ;
Ng, MK .
NUMERISCHE MATHEMATIK, 2003, 96 (02) :197-220