Dynamics and relaxation in spin nematics

被引:30
作者
Bar'yakhtar, V. G. [1 ,2 ]
Butrim, V. I. [3 ]
Kolezhuk, A. K. [1 ,2 ,4 ]
Ivanov, B. A. [1 ,2 ,5 ]
机构
[1] Natl Acad Sci, Inst Magnetism, UA-03142 Kiev, Ukraine
[2] Minist Educ, UA-03142 Kiev, Ukraine
[3] Taurida Natl VI Vernadsky Univ, UR-95007 Simferopol, Ukraine
[4] Taras Shevchenko Natl Univ Kiev, Inst High Technol, UR-03022 Kiev, Ukraine
[5] Taras Shevchenko Natl Univ Kiev, Radiophys Dept, UA-03022 Kiev, Ukraine
关键词
QUANTUM SIMULATION; SYMMETRY; PHASES; STATES;
D O I
10.1103/PhysRevB.87.224407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the dynamics and relaxation of elementary excitations (magnons) in the spin nematic (quadrupole ordered) phase of S = 1 magnets. We develop a general phenomenological theory of spin dynamics and relaxation for spin-1 systems. The results of the phenomenological approach are compared to those obtained by microscopic calculations for the specific S = 1 model with isotropic bilinear and biquadratic exchange interactions. This model exhibits a rich behavior depending on the ratio of bilinear and biquadratic exchange constants, including several points with an enhanced symmetry. It is shown that symmetry plays an important role in relaxation. Particularly, at the SU(3) ferromagnetic point the magnon damping Gamma depends on its wave vector k as Gamma proportional to k(4), while a deviation from the high-symmetry point changes the behavior of the leading term to Gamma proportional to k(2). We point out a similarity between the behavior of magnon relaxation in spin nematics to that in an isotropic ferromagnet.
引用
收藏
页数:9
相关论文
共 60 条
[1]  
Akhiezer A I, 1968, Spin Waves
[2]  
Andreev A. F., 1984, Soviet Physics - JETP, V60, P267
[3]  
[Anonymous], 1961, Report CTSL-20
[4]   All-optical formation of an atomic Bose-Einstein condensate [J].
Barrett, MD ;
Sauer, JA ;
Chapman, MS .
PHYSICAL REVIEW LETTERS, 2001, 87 (01)
[5]  
BARYAKHTAR VG, 1984, ZH EKSP TEOR FIZ+, V87, P1501
[6]   Unveiling order behind complexity: Coexistence of ferromagnetism and Bose-Einstein condensation [J].
Batista, CD ;
Ortiz, G ;
Gubernatis, JE .
PHYSICAL REVIEW B, 2002, 65 (18) :1-4
[7]   A generalized Landau-Lifshitz equation for an isotropic SU(3) magnet [J].
Bernatska, J. ;
Holod, P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (07)
[8]   Probable absence of a quadrupolar spin-nematic phase in the bilinear-biquadratic spin-1 chain -: art. no. 054433 [J].
Buchta, K ;
Fáth, G ;
Legeza, O ;
Sólyom, J .
PHYSICAL REVIEW B, 2005, 72 (05)
[9]   Critical dynamics and relaxation of elementary excitations of the nematic phase of a non-heisenberg magnet with spin S=1 [J].
Butrim, V. I. ;
Ivanov, B. A. ;
Kuznetsov, A. S. .
JETP LETTERS, 2010, 92 (03) :151-155
[10]   Magnon relaxation in a spin nematic [J].
Butrim, V. I. ;
Ivanov, B. A. ;
Kuznetsov, A. S. ;
Khymyn, R. S. .
LOW TEMPERATURE PHYSICS, 2008, 34 (12) :997-1004