Coupled Methyl Group Epimerization and Reduction by Polyketide Synthase Ketoreductase Domains. Ketoreductase-Catalyzed Equilibrium Isotope Exchange

被引:28
作者
Garg, Ashish [1 ]
Khosla, Chaitan [2 ,3 ,4 ]
Cane, David E. [1 ]
机构
[1] Brown Univ, Dept Chem, Providence, RI 02912 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
MOLECULAR-BASIS; CELMERS RULES; MACROLIDE BIOSYNTHESIS; 6-DEOXYERYTHRONOLIDE-B SYNTHASE; SACCHAROPOLYSPORA-ERYTHRAEA; FUNCTIONAL-ANALYSIS; MASS-SPECTROMETRY; CARRIER DOMAINS; ERYTHROMYCIN; STEREOCHEMISTRY;
D O I
10.1021/ja408944s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Incubation of [2-H-2]-(2S,3R)-2-methyl-3-hydroxypentanoyl-SACP ([2-H-2]-1a) with the epimerizing ketoreductase domain EryKR1 in the presence of a catalytic amount NADP(+) (0.05 equiv) resulted in time- and cofactor-dependent washout of deuterium from la, as a result of equilibrium isotope exchange of transiently generated [2-H-2]-2-methyl-3-ketopentanoyl-ACP. Incubations of [2-H-2]-(2S,3S)-2-methyl-3-hydroxy-pentanoyl-SACP with RifKR7 and with NysKR1 also resulted in time-dependent loss of deuterium. By contrast, incubations of [2-H-2]-(2R,3S)-2-methyl-3-hydroxypentanoyl-SACP and [2-H-2]-(2R,3R)-2-methyl-3-hydroxypentanoyl-SACP with the non-epimerizing ketoreductase domains EryKR6 and TylKR1, respectively, did not result in any significant washout of deuterium. The isotope exchange assay directly establishes that specific polyketide synthase ketoreductase domains also have an intrinsic epimerase activity, thus enabling mechanistic analysis of a key determinant of polyketide stereocomplexity.
引用
收藏
页码:16324 / 16327
页数:4
相关论文
共 36 条
[1]   Conserved amino acid residues correlating with ketoreductase stereospecificity in modular polyketicle synthases [J].
Caffrey, P .
CHEMBIOCHEM, 2003, 4 (07) :654-657
[2]   Programming of Erythromycin Biosynthesis by a Modular Polyketide Synthase [J].
Cane, David E. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (36) :27517-27523
[3]   MACROLIDE BIOSYNTHESIS .4. INTACT INCORPORATION OF A CHAIN-ELONGATION INTERMEDIATE INTO ERYTHROMYCIN [J].
CANE, DE ;
YANG, CC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (04) :1255-1257
[4]   MACROLIDE BIOSYNTHESIS .2. ORIGIN OF THE CARBON SKELETON AND OXYGEN-ATOMS OF THE ERYTHROMYCINS [J].
CANE, DE ;
HASLER, H ;
TAYLOR, PB ;
LIANG, TC .
TETRAHEDRON, 1983, 39 (21) :3449-3455
[5]   UNIFIED STEREOCHEMICAL MODEL OF POLYETHER ANTIBIOTIC-STRUCTURE AND BIOGENESIS [J].
CANE, DE ;
CELMER, WD ;
WESTLEY, JW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1983, 105 (11) :3594-3600
[6]   Stereospecificity of ketoreductase domains 1 and 2 of the tylactone modular polyketide synthase [J].
Castonguay, Roselyne ;
Valenzano, Chiara R. ;
Chen, Alice Y. ;
Keatinge-Clay, Adrian ;
Khosla, Chaitan ;
Cane, David E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (35) :11598-+
[7]   Stereospecificity of ketoreductase domains of the 6-deoxyerythronolide B synthase [J].
Castonguay, Roselyne ;
He, Weiguo ;
Chen, Alice Y. ;
Khosla, Chaitan ;
Cane, David E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (44) :13758-13769
[8]  
CELMER W D, 1971, Pure and Applied Chemistry, V28, P413, DOI 10.1351/pac197128040413
[10]   Structure-based dissociation of a type I polyketide synthase module [J].
Chen, Alice Y. ;
Cane, David E. ;
Khosla, Chaitan .
CHEMISTRY & BIOLOGY, 2007, 14 (07) :784-792