Fluctuations of Linear Eigenvalues Statistics for Wigner Matrices: Edge Case
被引:1
|
作者:
Pan, Guangming
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
Pan, Guangming
[1
]
Wang, Shaochen
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R ChinaNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
Wang, Shaochen
[2
]
Zhou, Wang
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, SingaporeNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
Zhou, Wang
[3
]
机构:
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
[2] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Wigner matrix;
Linear eigenvalue statistic;
Fluctuation theorem;
CENTRAL-LIMIT-THEOREM;
UNIVERSALITY;
D O I:
10.1007/s10955-016-1618-5
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
In this note, we consider the fluctuation theorem for , where are eigenvalues from a Wigner matrix and . We prove that in the edge case behaves like the counting function of Wigner matrix. Our results can be viewed as a complement of Bao et al. (J Stat Phys 150(1):88-129, 2013).
机构:
CNRS, Inst Math Toulouse, Equipe Stat & Probabilites, F-31062 Toulouse 09, FranceCNRS, Inst Math Toulouse, Equipe Stat & Probabilites, F-31062 Toulouse 09, France
Capitaine, M.
Donati-Martin, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, F-75252 Paris 05, France
CNRS, UMR 7599, Lab Probabilites & Modeles Aleatoires, F-75252 Paris 05, FranceCNRS, Inst Math Toulouse, Equipe Stat & Probabilites, F-31062 Toulouse 09, France
Donati-Martin, C.
Feral, D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, FranceCNRS, Inst Math Toulouse, Equipe Stat & Probabilites, F-31062 Toulouse 09, France
Feral, D.
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES,
2012,
48
(01):
: 107
-
133