Differential binding of triglyceride-rich lipoproteins to lipoprotein lipase

被引:0
作者
Xiang, SQ [1 ]
Cianflone, K [1 ]
Kalant, D [1 ]
Sniderman, AD [1 ]
机构
[1] McGill Univ, Ctr Hlth, Mike Rosenbloom Lab Cardiovasc Res, Montreal, PQ H3A 1A1, Canada
关键词
binding; lipoprotein lipase; lipoproteins; triglyceride clearance;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In comparison to very lo iv density lipoprotein VLDL), chylomicrons are cleared quickly from plasma. However, small changes in fasting plasma VLDL concentration substantially delay postprandial chylomicron triglyceride clearance, We hypothesized that differential binding to lipoprotein lipase (LPL), the first step in the lipolytic pathway, might explain these otherwise paradoxical relationships. Competition binding assays of different lipoproteins were performed in a solid phase assay with purified bovine LPL at 4 degrees C. The results showed that chylomicrons, VLDL, and low density lipoprotein (LDL) were able to inhibit specific binding of I-125-labeled VLDL to the same extent (85.1% +/- 13.1, 100% +/- 6.8, 90.7% +/- 23.2% inhibition, P = NS), but with markedly different efficiencies, The rank order of inhibition (Ki) was chylomicrons (0.27 +/- 0.02 nM apoB > VLDL (12.6 +/- 3.11 nM apoB) > LDL (34.8 +/- 11.1 nM apoB), By contrast, neither triglyceride (TG) liposomes, high density lipoprotein (HDL), nor LDL from patients with familial hypercholesterolemia were efficient at displacing the specific binding of I-125-labeled VLDL to LPL (30%, 39%, and no displacement, respectively). Importantly, smaller hydrolyzed chylomicrons had less affinity than the larger chylomicrons (K-i = 2.34 +/- 0.85 nM vs, 0.27 +/- 0.02 nM apoB respectively P < 0.01), This was also true for hydrolyzed VLDL, although to a lesser extent. Chylomicrons from patients with LPL deficiency and VLDL from hypertriglyceridemic subjects were also studied. Taken together, our results indicate an inverse linear relationship between chylomicron size and K-i; whereas none was present for VLDL, We hypothesize that the differences in binding affinity demonstrated in vitro when considered with the differences in particle number observed in vivo may largely explain the paradoxes we set out to study.
引用
收藏
页码:1655 / 1662
页数:8
相关论文
共 50 条
[41]   Apolipoprotein B, Triglyceride-Rich Lipoproteins, and Risk of Cardiovascular Events in Persons with CKD [J].
Lamprea-Montealegre, Julio Alejandro ;
Staplin, Natalie ;
Herrington, William G. ;
Haynes, Richard ;
Emberson, Jonathan ;
Baigent, Colin ;
de Boer, Ian H. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2020, 15 (01) :47-60
[42]   Effects of isotretinoin on the metabolism of triglyceride-rich lipoproteins and on the lipid profile in patients with acne [J].
Miguel Ângelo De Marchi ;
Raul C. Maranhão ;
Laura Inês V. Brandizzi ;
Dorotéia R. S. Souza .
Archives of Dermatological Research, 2006, 297 :403-408
[43]   Intracellular processing of endocytosed triglyceride-rich lipoproteins comprises both recycling and degradation [J].
Heeren, J ;
Weber, W ;
Beisiegel, U .
JOURNAL OF CELL SCIENCE, 1999, 112 (03) :349-359
[44]   Enhanced conversion of triglyceride-rich lipoproteins and increased low-density lipoprotein removal in LPLS447X carriers [J].
Nierman, MC ;
Prinsen, BHCMT ;
Rip, J ;
Veldman, RJ ;
Kuivenhoven, JA ;
Kastelein, JJP ;
de Sain-van der Velden, MGM ;
Stroes, ESG .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2005, 25 (11) :2410-2415
[45]   DGAT1 Participates in the Effect of HNF4A on Hepatic Secretion of Triglyceride-Rich Lipoproteins [J].
Krapivner, Sergey ;
Iglesias, Maria Jesus ;
Silveira, Angela ;
Tegner, Jesper ;
Bjorkegren, Johan ;
Hamsten, Anders ;
van't Hooft, Ferdinand M. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2010, 30 (05) :962-U167
[46]   GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins [J].
Beigneux, Anne P. ;
Davies, Brandon S. J. ;
Bensadoun, Andre ;
Fong, Loren G. ;
Young, Stephen G. .
JOURNAL OF LIPID RESEARCH, 2009, 50 :S57-S62
[47]   Linkage Between C-Reactive Protein and Triglyceride-Rich Lipoprotein Metabolism [J].
Thongtang, Nuntakorn ;
Diffenderfer, Margaret R. ;
Ooi, Esther M. ;
Asztalos, Bela F. ;
Dolnikowski, Gregory G. ;
Lamon-Fava, Stefania ;
Schaefer, Ernst J. .
CIRCULATION, 2011, 124 (21)
[48]   Formation of preβ1-HDL during lipolysis of triglyceride-rich lipoprotein [J].
Miyazaki, Osamu ;
Fukamachi, Isamu ;
Mori, Atsuo ;
Hashimoto, Hideyuki ;
Kawashiri, Masa-aki ;
Nohara, Atsushi ;
Noguchi, Tohru ;
Inazu, Akihiro ;
Yamagishi, Masakazu ;
Mabuchi, Hiroshi ;
Kobayashi, Junji .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 379 (01) :55-59
[49]   Increased postprandial triglyceride-rich lipoprotein levels in elderly survivors of myocardial infarction [J].
Lekhal, Samira ;
Borvik, Trond ;
Nordoy, Arne ;
Hansen, John-Bjarne .
LIPIDS, 2008, 43 (06) :507-515
[50]   The GPIHBP1-LPL Complex Is Responsible for the Margination of Triglyceride-Rich Lipoproteins in Capillaries [J].
Goulbourne, Chris N. ;
Gin, Peter ;
Tatar, Angelica ;
Nobumori, Chika ;
Hoenger, Andreas ;
Jiang, Haibo ;
Grovenor, Chris R. M. ;
Adeyo, Oludotun ;
Esko, Jeffrey D. ;
Goldberg, Ira J. ;
Reue, Karen ;
Tontonoz, Peter ;
Bensadoun, Andre ;
Beigneux, Anne P. ;
Young, Stephen G. ;
Fong, Loren G. .
CELL METABOLISM, 2014, 19 (05) :849-860