Transcriptome analysis reveals that distinct metabolic pathways operate in salt-tolerant and salt-sensitive upland cotton varieties subjected to salinity stress

被引:65
作者
Guo, Jinyan [1 ]
Shi, Gongyao [2 ]
Guo, Xiaoyan [2 ]
Zhang, Liwei [1 ]
Xu, Wenying [1 ]
Wang, Yumei [3 ]
Su, Zhen [1 ]
Hua, Jinping [2 ]
机构
[1] China Agr Univ, Coll Biol Sci, Beijing 100193, Peoples R China
[2] China Agr Univ, Beijing Key Lab Crop Genet Improvement, Key Lab Crop Heterosis & Utilizat,Minist Educ, Dept Plant Genet & Breeding,Coll Agron & Biotechn, Beijing 100193, Peoples R China
[3] Hubei Acad Agr Sci, Res Inst Cash Crops, Wuhan 430054, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Gossypium; Salinity; Transcriptome; Signal transduction; Secondary metabolism; INTERACTING PROTEIN-KINASE; GOSSYPIUM-HIRSUTUM; DROUGHT-STRESS; ARABIDOPSIS-THALIANA; MOLECULAR DIVERSITY; TRANSGENIC TOBACCO; DISEASE RESISTANCE; ABIOTIC STRESS; FACTOR GENE; ETHYLENE;
D O I
10.1016/j.plantsci.2015.05.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salinity stress is one of the most devastating abiotic stresses in crop plants. As a moderately salt-tolerant crop, upland cotton (Gossypium hirsutum L.) is a major cash crop in saline areas and a suitable model for salt stress tolerance research. In this study, we compared the transcriptome changes between the salt-tolerant upland cotton cultivar Zhong 07 and salt-sensitive cultivar Zhong G5 in response to NaCl treatments. Transcriptional regulation, signal transduction and secondary metabolism in two varieties showed significant differences, all of which might be related to mechanisms underlying salt stress tolerance. The transcriptional profiles presented here provide a foundation for deciphering the mechanism underlying salt tolerance. Based on our findings, we proposed several candidate genes that might be used to improve salt tolerance in upland cotton. (C) 2015 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 63 条
[1]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[2]  
Ashraf M, 2002, CRIT REV PLANT SCI, V21, P1, DOI 10.1016/S0735-2689(02)80036-3
[3]   Cloning of Gossypium hirsutum Sucrose Non-Fermenting 1-Related Protein Kinase 2 Gene (GhSnRK2) and Its Overexpression in Transgenic Arabidopsis Escalates Drought and Low Temperature Tolerance [J].
Bello, Babatunde ;
Zhang, Xueyan ;
Liu, Chuanliang ;
Yang, Zhaoen ;
Yang, Zuoren ;
Wang, Qianhua ;
Zhao, Ge ;
Li, Fuguang .
PLOS ONE, 2014, 9 (11)
[4]  
Champion A, 2009, MOL PLANT PATHOL, V10, P471, DOI [10.1111/j.1364-3703.2009.00549.x, 10.1111/J.1364-3703.2009.00549.X]
[5]   Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA [J].
Chen, Liang ;
Wang, Qing-Qing ;
Zhou, Li ;
Ren, Feng ;
Li, Deng-Di ;
Li, Xue-Bao .
MOLECULAR BIOLOGY REPORTS, 2013, 40 (08) :4759-4767
[6]   Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module [J].
Chini, Andrea ;
Boter, Marta ;
Solano, Roberto .
FEBS JOURNAL, 2009, 276 (17) :4682-4692
[7]   Understanding and improving salt tolerance in plants [J].
Chinnusamy, V ;
Jagendorf, A ;
Zhu, JK .
CROP SCIENCE, 2005, 45 (02) :437-448
[8]   Arabidopsis thaliana and Saccharomyces cerevisiae NHX1 genes encode amiloride sensitive electroneutral Na+-/H+ exchangers [J].
Darley, CP ;
van Wuytswinkel, OCM ;
van der Woude, K ;
Mager, WH ;
de Boer, AH .
BIOCHEMICAL JOURNAL, 2000, 351 :241-249
[9]   Plant salt-tolerance mechanisms [J].
Deinlein, Ulrich ;
Stephan, Aaron B. ;
Horie, Tomoaki ;
Luo, Wei ;
Xu, Guohua ;
Schroeder, Julian I. .
TRENDS IN PLANT SCIENCE, 2014, 19 (06) :371-379
[10]   agriGO: a GO analysis toolkit for the agricultural community [J].
Du, Zhou ;
Zhou, Xin ;
Ling, Yi ;
Zhang, Zhenhai ;
Su, Zhen .
NUCLEIC ACIDS RESEARCH, 2010, 38 :W64-W70