FGFR3 and FGFR4 Do not Mediate Renal Effects of FGF23

被引:113
作者
Liu, Shiguang [1 ]
Vierthaler, Luke [1 ]
Tang, Wen [1 ]
Zhou, Jianping [1 ]
Quarles, L. Darryl [1 ]
机构
[1] Univ Kansas, Med Ctr, Kidney Inst, Kansas City, KS 66103 USA
来源
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY | 2008年 / 19卷 / 12期
基金
美国国家卫生研究院;
关键词
D O I
10.1681/ASN.2007121301
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Fibroblast growth factor 23 (FGF23) is a phosphaturic factor that suppresses both sodium-dependent phosphate transport and production of 1,25-dihydroxyvitamin D [1,25(OH)(2)D] in the proximal tubule. In vitro studies suggest that FGFR3 is the physiologically relevant receptor for FGF23 in the kidney, but this has not been established in vivo. Here, immunohistochemical analysis of the mouse kidney revealed that the proximal tubule expresses FGF receptor 3 (FGFR3) but not FGFR1, FGFR2, or FGFR4. Compared with wild-type mice, Hyp mice, which have elevated circulating levels of FGF23, exhibited low levels of serum phosphate and 1,25(OH)(2)D, reduced expression of the sodium-dependent phosphate transporter NPT2a in the proximal tubules, and low bone mineral density as a result of osteomalacia. In contrast, neither the serum phosphate nor 1,25(OH)(2)D levels were altered in FGFR3-null mice. For examination of the role of FGFR3 in mediating the effects of FGF23, Hyp mice were crossed with FGFR3-null mice; interestingly, this failed to correct the aforementioned metabolic abnormalities of Hyp mice. Ablation of FGFR4 also failed to correct hypophosphatemia in Hyp mice. Because the ablation of neither FGFR3 nor FGFR4 inhibited the renal effects of excess FGF23, the kidney localization of FGFR1 was investigated. FGFR1 co-localized with Klotho, the co-factor required for FGF23-dependent FGFR activation, in the distal tubule. In summary, neither FGFR3 nor FGFR4 is the principal mediator of FGF23 effects in the proximal tubule, and co-localization of FGFR1 and Klotho suggests that the distal tubule may be an effector site of FGF23.
引用
收藏
页码:2342 / 2350
页数:9
相关论文
共 42 条
[1]  
Aono Y, 2003, J BONE MINER RES, V18, pS16
[2]   Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders [J].
Bai, XY ;
Miao, DS ;
Li, JR ;
Goltzman, D ;
Karaplis, AC .
ENDOCRINOLOGY, 2004, 145 (11) :5269-5279
[3]   The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency [J].
Bai, XY ;
Miao, DS ;
Goltzman, D ;
Karaplis, AC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (11) :9843-9849
[4]   Effect of fibroblast growth factor-23 on phosphate transport in proximal tubules [J].
Baum, M ;
Schiavi, S ;
Dwarakanath, V ;
Quigley, R .
KIDNEY INTERNATIONAL, 2005, 68 (03) :1148-1153
[5]   Role of prostaglandins in the pathogenesis of X-linked hypophosphatemia [J].
Baum, Michel ;
Syal, Ashu ;
Quigley, Raymond ;
Seikaly, Mouin .
PEDIATRIC NEPHROLOGY, 2006, 21 (08) :1067-1074
[6]   FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate [J].
Bowe, AE ;
Finnegan, R ;
de Beur, SMJ ;
Cho, J ;
Levine, MA ;
Kumar, R ;
Schiavi, SC .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 284 (04) :977-981
[7]   Fibroblast growth factor receptors and their ligands in the adult rat kidney [J].
Cancilla, B ;
Davies, A ;
Cauchi, JA ;
Risbridger, GP ;
Bertram, JF .
KIDNEY INTERNATIONAL, 2001, 60 (01) :147-155
[8]   The β-glucuronidase klotho hydrolyzes and activates the TRPV5 channel [J].
Chang, Q ;
Hoefs, S ;
van der Kemp, AW ;
Topala, CN ;
Bindels, RJ ;
Hoenderop, JG .
SCIENCE, 2005, 310 (5747) :490-493
[9]   Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3 [J].
Colvin, JS ;
Bohne, BA ;
Harding, GW ;
McEwen, DG ;
Ornitz, DM .
NATURE GENETICS, 1996, 12 (04) :390-397
[10]   MURINE FGFR-1 IS REQUIRED FOR EARLY POSTIMPLANTATION GROWTH AND AXIAL ORGANIZATION [J].
DENG, CX ;
WYNSHAWBORIS, A ;
SHEN, MM ;
DAUGHERTY, C ;
ORNITZ, DM ;
LEDER, P .
GENES & DEVELOPMENT, 1994, 8 (24) :3045-3057