Recovery of Lithium, Nickel, Cobalt, and Manganese from Spent Lithium-Ion Batteries Using L-Tartaric Acid as a Leachant

被引:316
|
作者
He, Li-Po [1 ]
Sun, Shu-Ying [1 ]
Mu, Yan-Yu [1 ]
Song, Xing-Fu [1 ]
Yu, Jian-Guo [1 ]
机构
[1] East China Univ Sci & Technol, Natl Engn Res Ctr Integrated Utilizat Salt Lake R, Room 809,Bldg 18,Meilong Rd 130, Shanghai 200237, Peoples R China
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2017年 / 5卷 / 01期
基金
中国国家自然科学基金;
关键词
Spent lithium-ion batteries; Green process; Recovery; L-Tartaric acid; Leaching; Kinetics; ORGANIC CITRIC-ACID; CATHODE MATERIALS; VALUABLE METALS; HYDROMETALLURGICAL PROCESS; SUSTAINABLE PROCESS; RECYCLING PROCESS; MOBILE PHONE; TECHNOLOGIES; KINETICS; SYSTEM;
D O I
10.1021/acssuschemeng.6b02056
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Herein is reported a novel green process involving natural L-tartaric acid leaching, developed for the sustainable recovery of Mn, Li, Co, and Ni from spent lithium-ion batteries (LIBs). Operating conditions affecting the leaching efficiencies of Mn, Li, Co, and Ni, including the concentrations of L-tartaric acid (C4H6O6) and hydrogen peroxide (H2O2), pulp density, temperature, and leaching time, were investigated. The leaching efficiencies were 99.31% for Mn, 99.07% for Li, 98.64% for Co, and 99.31% for Ni under the optimized conditions (4 vol% H2O2, 2 M L-tartaric acid, 17 g/L pulp density, 70 degrees C, and 30 min). The leaching mechanism was studied preliminarily based on the structure of L-tartaric acid. The kinetics data for the leaching of Mn, Li, Co, and Ni fit best to the shrinking-core model of chemical control. For the first stage, the activation energies (E(a)s) for the leaching of Mn, Li, Co, and Ni were 66.00, 54.03, 58.18, and 73.28 kJ/mol, respectively. For the second stage, the E(a)s for the leaching of Mn, Li, Co, and Ni were 55.68, 53.86, 58.94, and 47.78 kJ/mol, respectively. The proposed hydrometallurgical process was found to be simple, efficient, and environmentally friendly.
引用
收藏
页码:714 / 721
页数:8
相关论文
共 50 条
  • [1] Novel approach for in situ recovery of cobalt oxalate from spent lithium-ion batteries using tartaric acid and hydrogen peroxide
    Cheng, Qian
    Marchetti, Barbara
    Chen, Mingfang
    Li, Jun-Tao
    Wu, Jiayi
    Liu, Xiangyu
    Zhou, Xiao-Dong
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2023, 25 (03) : 1534 - 1548
  • [2] Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant
    Li, Li
    Ge, Jing
    Wu, Feng
    Chen, Renjie
    Chen, Shi
    Wu, Borong
    JOURNAL OF HAZARDOUS MATERIALS, 2010, 176 (1-3) : 288 - 293
  • [3] Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries
    Zhang, Jialiang
    Hu, Juntao
    Zhang, Wenjuan
    Chen, Yongqiang
    Wang, Chengyan
    JOURNAL OF CLEANER PRODUCTION, 2018, 204 : 437 - 446
  • [4] Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects
    Golmohammadzadeh, Rabeeh
    Rashchi, Fereshteh
    Vahidi, Ehsan
    WASTE MANAGEMENT, 2017, 64 : 244 - 254
  • [5] Enhancement in leaching process of lithium and cobalt from spent lithium-ion batteries using benzenesulfonic acid system
    Fu, Yuanpeng
    He, Yaqun
    Qu, Lili
    Feng, Yi
    Li, Jinlong
    Liu, Jiangshan
    Zhang, Guangwen
    Xie, Weining
    WASTE MANAGEMENT, 2019, 88 : 191 - 199
  • [6] Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries
    Sun, Liang
    Qiu, Keqiang
    WASTE MANAGEMENT, 2012, 32 (08) : 1575 - 1582
  • [7] A process of leaching recovery for cobalt and lithium from spent lithium-ion batteries by citric acid and salicylic acid
    Xu, Meiling
    Kang, Shumei
    Jiang, Feng
    Yan, Xinyong
    Zhu, Zhongbo
    Zhao, Qingping
    Teng, Yingxue
    Wang, Yu
    RSC ADVANCES, 2021, 11 (44) : 27689 - 27700
  • [8] Enhancement of leaching of cobalt and lithium from spent lithium-ion batteries by mechanochemical process
    Qu, Li-li
    He, Ya-qun
    Fu, Yuan-peng
    Xie, Wei-ning
    Ye, Cui-ling
    Lu, Qi-chang
    Li, Jin-long
    Li, Jia-hao
    Pang, Zhi-bo
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2022, 32 (04) : 1325 - 1335
  • [9] Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System
    Li, Li
    Fan, Ersha
    Guan, Yibiao
    Zhang, Xiaoxiao
    Xue, Qing
    Wei, Lei
    Wu, Feng
    Chen, Renjie
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (06): : 5224 - 5233
  • [10] Acid-Free Leaching Nickel, Cobalt, Manganese, and Lithium from Spent Lithium-Ion Batteries Using Fe(II) and Fe(III) Solution
    Dai, Yang
    Wang, Ning
    Xu, Zhaodong
    Gu, Hannian
    Chen, Mengjun
    Hua, Dong
    JOURNAL OF SUSTAINABLE METALLURGY, 2022, 8 (02) : 863 - 871