Analysis of paper pressing: the saturated one-dimensional case

被引:2
作者
Bezanovic, B [1 ]
van Duijn, CJ [1 ]
Kaasschieter, EF [1 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2006年 / 86卷 / 01期
关键词
paper pressing; nonlinear diffusion; interior boundary; cross conditions;
D O I
10.1002/zamm.200410220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a one-dimensional model that describes pressing of water saturated paper in the press-section of the paper machine. The model involves two nonlinear diffusion equations which are coupled across an internal boundary. Existence and uniqueness as a number of qualitative properties are demonstrated. Further, computational results for a concrete case are discussed. (c) 2006 WILEY-NCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:18 / +
页数:19
相关论文
共 21 条
[1]  
[Anonymous], 2012, ELEMENTS FUNCTIONAL
[2]  
Bear J., 1988, DYNAMICS FLUIDS PORO
[3]   Analysis of oil trapping in porous media flow [J].
Bertsch, M ;
Dal Passo, R ;
Van Duijn, CJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (01) :245-267
[4]  
BEZANOVIC D, 2003, P 2003 INT PAP PHYS
[5]  
FRIEDMAN A., 1964, Partial differential equations of parabolic type
[6]   HOLDER CONTINUITY OF SOLUTIONS OF PARABOLIC EQUATIONS [J].
GILDING, BH .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 13 (MAY) :103-106
[7]  
Helmig R., 1997, Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems
[8]  
HILTUNEN K, 1995, THEISS U JYVASKYLA F
[9]   FLOW OF WATER AND AIR IN A COMPRESSIBLE POROUS-MEDIUM - A MODEL OF WET PRESSING OF PAPER [J].
KATAJA, M ;
HILTUNEN, K ;
TIMONEN, J .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1992, 25 (07) :1053-1063
[10]  
KATAJA M, 1995, NORD PULP PAP RES J, V3, P62