Growth model for nanomallets of zinc oxide from a catalyst-free combust-oxidised process

被引:16
作者
Mahmud, S [1 ]
Abdullah, MJ [1 ]
Chong, J [1 ]
Mohamad, AK [1 ]
Zakaria, MZ [1 ]
机构
[1] Univ Sci Malaysia, Sch Phys, George Town 11800, Malaysia
关键词
growth models; nucleation planes; zinc oxide nanomallets; catalyst-free combust-oxidised process; semiconducting II-VI materials;
D O I
10.1016/j.jcrysgro.2005.10.139
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
A growth model is proposed for a newly found nanostructure of zinc oxide, namely nanomallet, that is prepared via a catalyst-free combust-oxidised (CFCO) process (better known as the French process). In the CFCO process, molten zinc is vaporised and instantaneously oxidised in normal atmosphere to produce high purity zinc oxide. With the help of high-resolution field emission scanning electron microscope (FESEM) set at 15 kV incident electron energy, clear images of mallet-like nanostructure are observed. These polycrystalline structures can be classified into polyhedral and rectangular nanomallets. The polyhedral nanomallet has higher O/Zn relative atomic mol% ratio based on EDAX data and its handle tend to grow along [0 0 0 2] direction. The quasi-rectangular nanomallet tend to grow along [1 0 1(-) 0] direction for both the head and handle. Local temperature and oxygen partial pressure play a key role in determining the preferred nanostructures that include rectangular-like, polyhedral-like and taper-faceted structures. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:118 / 123
页数:6
相关论文
共 10 条
[1]   Large hexagonal arrays of aligned ZnO nanorods [J].
Banerjee, D ;
Rybczynski, J ;
Huang, JY ;
Wang, DZ ;
Kempa, K ;
Ren, ZF .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (04) :749-752
[2]   Photoluminescence and polarized photodetection of single ZnO nanowires [J].
Fan, ZY ;
Chang, PC ;
Lu, JG ;
Walter, EC ;
Penner, RM ;
Lin, CH ;
Lee, HP .
APPLIED PHYSICS LETTERS, 2004, 85 (25) :6128-6130
[3]   Electrical transport properties of single ZnO nanorods [J].
Heo, YW ;
Tien, LC ;
Norton, DP ;
Kang, BS ;
Ren, F ;
Gila, BP ;
Pearton, SJ .
APPLIED PHYSICS LETTERS, 2004, 85 (11) :2002-2004
[4]   Controlled synthesis and manipulation of ZnO nanorings and nanobows [J].
Hughes, WL ;
Wang, ZL .
APPLIED PHYSICS LETTERS, 2005, 86 (04) :043106-1
[5]  
Lide D.R., 1993, HDB CHEM PHYS, V74th
[6]  
MAHMUD S, 2005, P INT C NAN NANO2005, V1, P309
[7]  
MAHMUD S, IN PRESS J SYNTHESIS
[8]   Shape controllable synthesis of ZnO nanorod arrays via vapor phase growth [J].
Sun, XC ;
Zhang, HZ ;
Xu, J ;
Zhao, Q ;
Wang, RM ;
Yu, DP .
SOLID STATE COMMUNICATIONS, 2004, 129 (12) :803-807
[9]   Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis [J].
Vanheusden, K ;
Seager, CH ;
Warren, WL ;
Tallant, DR ;
Caruso, J ;
HampdenSmith, MJ ;
Kodas, TT .
JOURNAL OF LUMINESCENCE, 1997, 75 (01) :11-16
[10]   The growth and optical properties of ZnO nanowires at the junctions of nanowalls [J].
Xu, C ;
Kim, M ;
Chung, S ;
Kim, DE .
SOLID STATE COMMUNICATIONS, 2004, 132 (12) :837-840