Some results in Moore-Gibson-Thompson thermoelasticity of dipolar bodies

被引:130
作者
Marin, Marin [1 ]
Ochsner, Andreas [2 ]
Bhatti, Muhammad Mubashir [3 ]
机构
[1] Transilvania Univ Brasov, Dept Math & Comp Sci, Brasov 500093, Romania
[2] Esslingen Univ Appl Sci, Fac Mech Engn, D-73728 Esslingen, Germany
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2020年 / 100卷 / 12期
关键词
dipolar bodies; instability; Lagrange identities; uniqueness; Moore-Gibson-Thompson theory; EQUATION; GROWTH; MEMORY; MODEL;
D O I
10.1002/zamm.202000090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the mixed initial-boundary value problem in the context of the Moore-Gibson-Thompson theory of thermoelasticity for dipolar bodies. We consider the case of heat conduction with dissipation. Even if the elasticity tensors are not supposed to be positively defined, we have proven both, the uniqueness and the instability of the solution of the mixed problem. In the case that the mass density and the thermal conductivity tensor are positive, we obtain the uniqueness of the solution using some Lagrange type identities.
引用
收藏
页数:13
相关论文
共 30 条
[21]   An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability [J].
Marchand, R. ;
McDevitt, T. ;
Triggiani, R. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (15) :1896-1929
[22]   Some Estimates on Vibrations in Thermoelasticity of Dipolar Bodies [J].
Marin, M. .
JOURNAL OF VIBRATION AND CONTROL, 2010, 16 (01) :33-47
[23]   THE LAGRANGE IDENTITY METHOD IN THERMOELASTICITY OF BODIES WITH MICROSTRUCTURE [J].
MARIN, M .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1994, 32 (08) :1229-1240
[24]  
Marin M, 2016, DYNAM SYST APPL, V25, P175
[25]   MICRO-STRUCTURE IN LINEAR ELASTICITY [J].
MINDLIN, RD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (01) :51-78
[26]   On uniqueness and instability for some thermomechanical problems involving the Moore-Gibson-Thompson equation [J].
Pellicer, Marta ;
Quintanilla, Ramon .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (03)
[27]   OPTIMAL SCALAR PRODUCTS IN THE MOORE-GIBSON-THOMPSON EQUATION [J].
Pellicer, Marta ;
Sola-Morales, Joan .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2019, 8 (01) :203-220
[28]   Moore-Gibson-Thompson thermoelasticity [J].
Quintanilla, Ramon .
MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (12) :4020-4031
[29]   STUDY OF HEAT AND MASS TRANSFER IN THE EYRING-POWELL MODEL OF FLUID PROPAGATING PERISTALTICALLY THROUGH A RECTANGULAR COMPLIANT CHANNEL [J].
Riaz, A. ;
Ellahi, R. ;
Bhatti, M. M. ;
Marin, M. .
HEAT TRANSFER RESEARCH, 2019, 50 (16) :1539-1560
[30]  
Thompson P., 1972, COMPRESSIBLE FLUID D