On a Subclass of Harmonic Univalent Functions Defined by Ruscheweyh q-differential operator

被引:1
作者
Ravindar, B. [1 ,2 ]
Sharma, R. B. [2 ]
Magesh, N. [3 ]
机构
[1] SR Engn Coll, Dept Math, Warangal, Telangana, India
[2] Kakatiya Univ, Dept Math, Warangal, Mangano, India
[3] Govt Arts Coll Men, Postgrad & Res Dept Math, Krishnagiri, Tamil Nadu, India
来源
11TH NATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS | 2019年 / 2112卷
关键词
CONVOLUTION; CONNECTION; TRANSFORMS;
D O I
10.1063/1.5112203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and introduce new subclasses of harmonic univalent functions by applying the concept and theory of fractional q-calculus associated with the Ruscheweyh q -differential operator in the open unit disk. Coefficient estimates and extreme points for the functions in these classes are obtained.
引用
收藏
页数:11
相关论文
共 40 条
[1]   COEFFICIENT ESTIMATES FOR SOME CLASSES OF FUNCTIONS ASSOCIATED WITH q-FUNCTION THEORY [J].
Agrawal, Sarita .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 95 (03) :446-456
[2]  
Ali RM, 2009, B IRAN MATH SOC, V35, P119
[3]  
Andrews George E., 1999, ENCY MATH ITS APPL, V71
[4]   Argument estimates of certain analytic functions defined by a class of multiplier transformations [J].
Cho, NE ;
Srivastava, HM .
MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (1-2) :39-49
[5]   Some inclusion properties of a certain family of integral operators [J].
Choi, JH ;
Saigo, M ;
Srivastava, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) :432-445
[6]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[7]   On a class of analytic functions related to conic domains involving q-calculus [J].
Govindaraj, M. ;
Sivasubramanian, S. .
ANALYSIS MATHEMATICA, 2017, 43 (03) :475-487
[8]  
Haripriya M, 2017, J ANAL, V25, P96
[9]  
Ismail M.E.H., 1990, COMPLEX VAR, V14, P77, DOI [10.1080/17476939008814407, DOI 10.1080/17476939008814407]
[10]  
Jahangiri J. M., 2017, J FRACTIONAL CALCULU, V8, P88