Differential Evolution Algorithm Applied to Non-Stationary Bandit Problem

被引:0
作者
St-Pierre, David L. [1 ,2 ,3 ]
Liu, Jialin [2 ,3 ]
机构
[1] Univ Liege, B-4000 Liege, Belgium
[2] Univ Paris Sud, Inria, TAO, Paris, France
[3] UMR CNRS 8623, FR-91190 Gif Sur Yvette, France
来源
2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2014年
关键词
OPTIMIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we compare Differential Evolution ( DE), an evolutionary algorithm, to classical bandit algorithms over the non-stationary bandit problem. First we define a testcase where the variation of the distributions depends on the number of times an option is evaluated rather than over time. This definition allows the possibility to apply these algorithms over a wide range of problems such as black-box portfolio selection. Second we present our own variant of discounted Upper Confidence Bound (UCB) algorithm that outperforms the current state-of-the-art algorithms for the non-stationary bandit problem. Third, we introduce a variant of DE and show that, on a selection over a portfolio of solvers for the Cart-Pole problem, our version of DE outperforms the current best UCB algorithms.
引用
收藏
页码:2397 / 2403
页数:7
相关论文
共 25 条
  • [1] [Anonymous], CORR
  • [2] [Anonymous], 2011, Wilmott, DOI DOI 10.1002/WILM.10034
  • [3] [Anonymous], 2008, ARXIV08053415
  • [4] Ardia D, 2011, R J, V3, P27
  • [5] Astest Morales S., NOISY OPTIMIZA UNPUB
  • [6] Astete Morales S., 2013, Proceedings of the 15th annual conference companion on Genetic and evolutionary computation, P223
  • [7] Audibert JY, 2007, LECT NOTES ARTIF INT, V4754, P150
  • [8] Finite-time analysis of the multiarmed bandit problem
    Auer, P
    Cesa-Bianchi, N
    Fischer, P
    [J]. MACHINE LEARNING, 2002, 47 (2-3) : 235 - 256
  • [9] Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
    Brest, Janez
    Greiner, Saso
    Boskovic, Borko
    Mernik, Marjan
    Zumer, Vijern
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) : 646 - 657
  • [10] Bubeck S, 2009, LECT NOTES ARTIF INT, V5809, P23, DOI 10.1007/978-3-642-04414-4_7