Perturbation theory for the two-particle Schrodinger operator on a one-dimensional lattice

被引:5
作者
Abdullaev, JI [1 ]
机构
[1] Samarkand State Univ, Samarkand, Uzbekistan
关键词
Hamiltonian; Schrodinger operator; total quasimomentum; eigenvalue; perturbation theory;
D O I
10.1007/s11232-005-0182-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the two-particle Schrodinger operator H(k) on the one-dimensional lattice Z. The operator H(pi) has infinitely many eigenvalues z(m)(pi) = (v) over cap (m), m is an element of Z(+). If the potential (v) over cap increases on Z(+), then only the eigenvalue z(0)(pi) is simple, and all the other eigenvalues are of multiplicity two. We prove that for each of the doubly degenerate eigenvalues z(m)(pi), m is an element of N, the operator H(pi) splits into two nondegenerate z(m)(-)(k) < z(m)(+)(k) under small variations of k is an element of (pi - delta, pi ). We show that z(m)(-)(k) < z(m)(+)(k) and obtain an estimate for z(m)(+)(k) - z(m)(-)(k) for k is an element of (pi - delta, pi). The eigenvalues z(0)(k) and z(1)(-)(k) increase on [pi - 6, pi]. If (Delta(v) over cap)(m) > 0, then z(m)(+/-)(k) for m >= 2 also has this property.
引用
收藏
页码:1551 / 1558
页数:8
相关论文
共 10 条
[1]  
ABDULLAEV ZI, 1995, THEOR MATH PHYS, V103, P390
[2]   Energy-momentum spectrum of some two-particle lattice Schrodinger Hamiltonians [J].
da Veiga, PAF ;
Ioriatti, L ;
O'Carroll, M .
PHYSICAL REVIEW E, 2002, 66 (01)
[3]  
Kato T., 1966, Perturbation Theory for Linear Operators., DOI [10.1007/978-3-662-12678-3, DOI 10.1007/978-3-662-12678-3]
[5]   BOUND-STATES OF 2-PARTICLE CLUSTER OPERATOR [J].
MAMATOV, SS ;
MINLOS, RA .
THEORETICAL AND MATHEMATICAL PHYSICS, 1989, 79 (02) :455-466
[6]   THE FEW-BODY PROBLEM ON A LATTICE [J].
MATTIS, DC .
REVIEWS OF MODERN PHYSICS, 1986, 58 (02) :361-379
[7]  
MINLOS RA, 1989, P C DUBN USSR 6 10 S, P243
[9]  
REED M., 1978, Methods of modern mathematical physics: IV: Analysis of operators, VIV
[10]   BOUND-STATE OF WEAKLY COUPLED SCHRODINGER OPERATORS IN ONE AND 2 DIMENSIONS [J].
SIMON, B .
ANNALS OF PHYSICS, 1976, 97 (02) :279-288