Lower bound for the volumes of quaternionic hyperbolic orbifolds

被引:1
作者
Han, Minghua [1 ]
Xie, Baohua [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha, Hunan, Peoples R China
关键词
Embedded ball; quaternionic hyperbolic orbifolds; volume; MANIFOLDS; BALLS; CUSPS;
D O I
10.1080/17476933.2016.1202244
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a lower bound for the volume of a quaternionic hyperbolic n-orbifold depending only on the largest order of a torsion element of its fundamental group.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 21 条
  • [1] Adeboye I, 2012, MICH MATH J, V63, P355
  • [2] Lower bounds for the volume of hyperbolic n-orbifolds
    Adeboye, Ilesanmi
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2008, 237 (01) : 1 - 19
  • [3] On volumes of hyperbolic orbifolds
    Adeboye, Ilesanmi
    Wei, Guofang
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2012, 12 (01): : 215 - 233
  • [4] [Anonymous], 1972, Pure and Appl. Math
  • [5] Bridson M. R., 1999, GRUND MATH WISS, V319, DOI DOI 10.1007/978-3-662-12494-9
  • [6] CHEN SS, 1974, HYPERBOLIC SPACES CO, P00049
  • [7] JORGENSEN INEQUALITY FOR DISCRETE-GROUPS IN NORMED ALGEBRAS
    FRIEDLAND, S
    HERSONSKY, S
    [J]. DUKE MATHEMATICAL JOURNAL, 1993, 69 (03) : 593 - 614
  • [8] A lower bound for the volumes of complex hyperbolic orbifolds
    Fu, X.
    Li, L.
    Wang, X.
    [J]. GEOMETRIAE DEDICATA, 2011, 155 (01) : 21 - 30
  • [9] Minimal co-volume hyperbolic lattices, I: The spherical points of a Kleinian group
    Gehring, Frederick W.
    Martin, Gaven J.
    [J]. ANNALS OF MATHEMATICS, 2009, 170 (01) : 123 - 161
  • [10] On the volumes of complex hyperbolic manifolds
    Hersonsky, S
    Paulin, F
    [J]. DUKE MATHEMATICAL JOURNAL, 1996, 84 (03) : 719 - 737