Electrical and thermophysical properties of ZrB2 and HfB2 based composites

被引:95
|
作者
Mallik, Manab [1 ]
Kailath, Ansu J. [2 ]
Ray, K. K. [1 ]
Mitra, R. [1 ]
机构
[1] Indian Inst Technol, Dept Met & Mat Engn, Kharagpur 721302, W Bengal, India
[2] Natl Met Lab, Jamshedpur, Jharkhand, India
关键词
Composites; Thermal conductivity; Thermal expansion; Electrical conductivity; Borides; THERMAL-EXPANSION COEFFICIENTS; MECHANICAL-PROPERTIES; ELASTIC PROPERTIES; PARTICLE-SIZE; MICROSTRUCTURE; CONDUCTIVITY; TEMPERATURE; OXIDATION; BEHAVIOR; RESISTANCE;
D O I
10.1016/j.jeurceramsoc.2012.02.013
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrical resistivities, thermal conductivities and thermal expansion coefficients of hot-pressed ZrB2-SiC, ZrB2-SiC-Si3N4, ZrB2-ZrC-SiC-Si3N4 and HfB2-SiC composites have been evaluated. Effects of Si3N4 and ZrC additions on electrical and thermophysical properties of ZrB2-SiC composite have been investigated. Further, properties of ZrB2-SiC and HfB2-SiC composites have been compared. Electrical resistivities (at 25 degrees C), thermal conductivities (between 25 and 1300 degrees C) and thermal expansion coefficients (over 25-1000 degrees C) have been determined by four-probe method, laser flash method and thermo-mechanical analyzer, respectively. Experimental results have shown reasonable agreement with theoretical predictions. Electrical resistivities of ZrB2-based composites are lower than that of HfB2-SiC composite. Thermal conductivity of ZrB2 increases with addition of SiC, while it decreases on ZrC addition, which is explained considering relative contributions of electrons and phonons to thermal transport. As expected, thermal expansion coefficient of each composite is reduced by SiC additions in 25-200 degrees C range, while it exceeds theoretical values at higher temperatures. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2545 / 2555
页数:11
相关论文
共 50 条
  • [1] Thermal and Electrical Transport Properties of Spark Plasma-Sintered HfB2 and ZrB2 Ceramics
    Zhang, Luning
    Pejakovic, Dusan A.
    Marschall, Jochen
    Gasch, Matthew
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (08) : 2562 - 2570
  • [2] HIGH-TEMPERATURE HARDNESS OF ZRB2 AND HFB2
    BSENKO, L
    LUNDSTRO.T
    JOURNAL OF THE LESS-COMMON METALS, 1974, 34 (02): : 273 - 278
  • [3] Effect of CrSi2 and HfB2 addition on densification and properties of ZrB2
    Sonber, J. K.
    Murthy, T. S. R. Ch
    Subramanian, C.
    Krishnamurthy, N.
    Hubli, R. C.
    Suri, A. K.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2012, 31 : 125 - 131
  • [4] Doping-induced superconductivity of ZrB2 and HfB2
    Barbero, N.
    Shiroka, T.
    Delley, B.
    Grant, T.
    Machado, A. J. S.
    Fisk, Z.
    Ott, H. -R.
    Mesot, J.
    PHYSICAL REVIEW B, 2017, 95 (09)
  • [5] Novel ZrB2 and HfB2 metaldiboride coatings by LPCVD
    Hoehn, M.
    Krug, M.
    Matthey, B.
    SURFACE & COATINGS TECHNOLOGY, 2024, 477
  • [6] A model for the oxidation of ZrB2, HfB2 and TiB2
    Parthasarathy, T. A.
    Rapp, R. A.
    Opeka, M.
    Kerans, R. J.
    ACTA MATERIALIA, 2007, 55 (17) : 5999 - 6010
  • [7] Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2
    Sonber, J. K.
    Murthy, T. S. R. Ch
    Subramanian, C.
    Kumar, Sunil
    Fotedar, R. K.
    Suri, A. K.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2011, 29 (01): : 21 - 30
  • [8] Properties of AlMgB14 hot pressed with additions of ZrB2 and HfB2
    Gaballa, Osama
    Ball, Jonathon H.
    Cook, Bruce
    Peters, J. S.
    Russell, Alan
    POWDER TECHNOLOGY, 2013, 235 : 968 - 974
  • [9] Ab Initio Computations of Electronic, Mechanical, and Thermal Properties of ZrB2 and HfB2
    Lawson, John W.
    Bauschlicher, Charles W., Jr.
    Daw, Murray S.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (10) : 3494 - 3499
  • [10] Effect of HfB2 on microstructure and mechanical properties of ZrB2-SiC-based composites
    Balak, Z.
    Zakeri, M.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2016, 54 : 127 - 137