Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential

被引:1
作者
Vetro, Calogero [1 ]
机构
[1] Univ Palermo, Dept Math & Comp Sci, Via Archirafi 34, I-90123 Palermo, Italy
关键词
Positive solutions; Sublinear and superlinear perturbation; Nonlinear Picone's identity; Nonlinear maximum principle; Nonlinear regularity; Indefinite potential; Minimal positive solution; Uniqueness; POSITIVE SOLUTIONS; NEUMANN PROBLEMS; NODAL SOLUTIONS; EQUATIONS; SIGN;
D O I
10.1007/s13324-020-00416-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a parametric nonlinear Robin problem driven by the negative p-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation f (z, center dot) is (p - 1)-sublinear and then the case where it is (p - 1)-superlinear but without satisfying the Ambrosetti-Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter lambda is an element of R which we specify exactly in terms of principal eigenvalue of the differential operator.
引用
收藏
页数:34
相关论文
共 50 条
[41]   New multiplicity results for critical p-Laplacian problems [J].
Mercuri, Carlo ;
Perera, Kanishka .
JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (04)
[42]   Eigenvalue problems for fractional differential equations with mixed derivatives and generalized p-Laplacian [J].
Wang, Yupin ;
Liu, Shutang ;
Han, Zhenlai .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (06) :830-850
[43]   Eigenvalue problems of fractional q-difference equations with generalized p-Laplacian [J].
Li, Xinhui ;
Han, Zhenlai ;
Sun, Shurong ;
Sun, Liying .
APPLIED MATHEMATICS LETTERS, 2016, 57 :46-53
[44]   Initial value problems of p-Laplacian with a strong singular indefinite weight [J].
Li, Hong-Xu .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 77 (3-4) :415-425
[45]   One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign [J].
Kaufmann, Uriel ;
Medri, Ivan .
ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (03) :251-259
[46]   Arbitrarily Small Nodal Solutions for Parametric Robin (p, q)-Equations Plus an Indefinite Potential [J].
Salvatore Leonardi ;
Nikolaos S. Papageorgiou .
Acta Mathematica Scientia, 2022, 42 :561-574
[47]   APPLICATIONS OF A PERTURBED LINEAR VARIATIONAL PRINCIPLE VIA P-LAPLACIAN [J].
Meghea, Irina .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2022, 84 (01) :141-152
[48]   Global multiplicity of positive solutions for anisotropic (p, q)-Robin boundary value problems with an indefinite potential term [J].
Ozterk, Eylem ;
Papageorgiou, Nikolaos S. .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (58)
[49]   ON A VARIANT OF THE MAXIMUM PRINCIPLE INVOLVING RADIAL p-LAPLACIAN WITH APPLICATIONS TO NONLINEAR EIGENVALUE PROBLEMS AND NONEXISTENCE RESULTS [J].
Adamowicz, Tomasz ;
Kalamajska, Agnieszka .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2009, 34 (01) :1-20
[50]   RESONANT ROBIN PROBLEMS WITH INDEFINITE AND UNBOUNDED POTENTIAL [J].
Papageorgiou, Nikolaos S. ;
Smyrlis, George .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2017, 49 (01) :51-74