Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential

被引:1
作者
Vetro, Calogero [1 ]
机构
[1] Univ Palermo, Dept Math & Comp Sci, Via Archirafi 34, I-90123 Palermo, Italy
关键词
Positive solutions; Sublinear and superlinear perturbation; Nonlinear Picone's identity; Nonlinear maximum principle; Nonlinear regularity; Indefinite potential; Minimal positive solution; Uniqueness; POSITIVE SOLUTIONS; NEUMANN PROBLEMS; NODAL SOLUTIONS; EQUATIONS; SIGN;
D O I
10.1007/s13324-020-00416-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a parametric nonlinear Robin problem driven by the negative p-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation f (z, center dot) is (p - 1)-sublinear and then the case where it is (p - 1)-superlinear but without satisfying the Ambrosetti-Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter lambda is an element of R which we specify exactly in terms of principal eigenvalue of the differential operator.
引用
收藏
页数:34
相关论文
共 50 条
[21]   Semilinear Robin Problems with Indefinite Potential and Competition Phenomena [J].
Hu, Shouchuan ;
Papageorgiou, Nikolaos S. .
ACTA APPLICANDAE MATHEMATICAE, 2020, 168 (01) :187-216
[22]   Singular and Superlinear Perturbations of the Eigenvalue Problem for the Dirichlet p-Laplacian [J].
Papageorgiou, Nikolaos S. ;
Zhang, Chao .
RESULTS IN MATHEMATICS, 2021, 76 (01)
[23]   STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN [J].
Boukhsas, A. ;
Zerouali, A. ;
Chakrone, O. ;
Karim, B. .
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 67 (3-4) :127-142
[24]   Quasilinear eigenvalue problems with singular weights for the p-Laplacian [J].
Drabek, Pavel ;
Hernandez, Jesus .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (04) :1069-1086
[25]   Groundstate asymptotics for a class of singularly perturbed p-Laplacian problems in RN [J].
Albalawi, Wedad ;
Mercuri, Carlo ;
Moroz, Vitaly .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (01) :23-63
[26]   Nonlinear Robin problems with indefinite potential [J].
Leonardi, S. ;
Onete, Florin, I .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
[27]   Positive solutions for the Robin p-Laplacian problem with competing nonlinearities [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
ADVANCES IN CALCULUS OF VARIATIONS, 2019, 12 (01) :31-56
[28]   Schrodinger Robin problems with indefinite potential and logistic reaction [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. ;
Petiurenko, Anna .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (01) :118-143
[29]   EIGENVALUE PROBLEMS FOR p-LAPLACIAN DYNAMIC EQUATIONS ON TIME SCALES [J].
Guo, Mingzhou ;
Sun, Hong-Rui .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) :999-1011
[30]   Multiple positive solutions for nonlinear eigenvalue problems with the p-Laplacian [J].
Hu, Shouchuan ;
Papageorgiou, Nikolas S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (12) :4286-4300