Local Wiener-Hopf factorization and indices over arbitrary fields

被引:3
作者
Amparan, A. [1 ]
Marcaida, S.
Zaballa, I.
机构
[1] Univ Basque Country, Dept Matemat Aplicada, E-48080 Bilbao, Spain
关键词
Wiener-Hopf factorization indices; Local rings; Rational matrices; SYSTEMS;
D O I
10.1016/j.laa.2008.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a generalization to arbitrary fields of the usual Wiener-Hopf equivalence of complex valued rational matrix functions is given and the left local Wiener-Hopf factorization indices defined in our previous work [A. Amparan, S. Marcaida, I. Zaballa, Local realizations and local polynomial matrix representations of systems, Linear Algebra Appl. 425 (2007) 757-775] are proved to form a complete system of invariants for this equivalence relation. For the case when the field is algebraically closed a reduced form of a controllable matrix pair under the feedback equivalence is presented for which the controllability indices can be written as sums of the local controllability indices [A. Amparan, S. Marcaida, I. Zaballa, On the existence of linear systems with prescribed invariants for system similarity, Linear Algebra Appl. 413 (2006) 510-533]. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1700 / 1722
页数:23
相关论文
共 20 条
[1]   Local realizations and local polynomial matrix representations of systems [J].
Amparan, A. ;
Marcaida, S. ;
Zaballa, I. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 425 (2-3) :757-775
[2]   On the existence of linear systems with prescribed invariants for system similarity [J].
Amparan, A ;
Marcaida, S ;
Zaballa, I .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 413 (2-3) :510-533
[3]   Wiener-Hopf factorization indices and infinite structure of rational matrices [J].
Amparan, A ;
Marcaida, S ;
Zaballa, I .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 42 (06) :2130-2144
[4]  
[Anonymous], 1974, THEORY MATRICES
[5]  
[Anonymous], 1967, INEQUALITIES
[6]  
[Anonymous], 1991, Linear Multivariable Control
[7]  
Atiyah M.F., 1969, Introduction to commutative algebra
[8]  
BART H, 1984, LECT NOTES CONTROL I
[9]  
Clancey Kevin F., 1981, Factorization of Matrix Functions and Singular Integral Operators
[10]   LOCAL SYSTEM EQUIVALENCE [J].
CULLEN, DJ .
MATHEMATICAL SYSTEMS THEORY, 1986, 19 (01) :67-78