Integrals for monoidal Hom-Hopf algebras and their applications

被引:44
作者
Chen, Yuanyuan [1 ]
Wang, Zhongwei [1 ]
Zhang, Liangyun [1 ]
机构
[1] Nanjing Agr Univ, Dept Math, Nanjing 210095, Jiangsu, Peoples R China
关键词
LIE-ALGEBRAS; DEFORMATIONS;
D O I
10.1063/1.4813447
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Integrals of monoidal Hom-Hopf algebras are introduced and the existence and uniqueness of integrals for finite-dimensional monoidal Hom-Hopf algebras are investigated first. Then integrals are applied to the Maschke type theorem for monoidal Hom-Hopf algebras controlling the semisimplicity and separability of monoidal Hom-Hopf algebras. Further, monoidal Hom-algebras are characterized with additional Frobenius property, and the question when finite-dimensional monoidal Hom-Hopf algebras are Frobenius is studied. As applications of integrals, the Maschke type theorem for Hom-smash product is given, and the Morita context in the Hom-category (H) over tilde (M-k) is constructed. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:22
相关论文
共 31 条
[1]  
Abe E., 2009, HOPF ALGEBRAS
[2]   Horn-Lie superalgebras and Horn-Lie admissible superalgebras [J].
Ammar, Faouzi ;
Makhlouf, Abdenacer .
JOURNAL OF ALGEBRA, 2010, 324 (07) :1513-1528
[3]   Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras [J].
Arnlind, Joakim ;
Makhlouf, Abdenacer ;
Silvestrov, Sergei .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
[4]   Hopf monads [J].
Bruguieres, Alain ;
Virelizier, Alexis .
ADVANCES IN MATHEMATICS, 2007, 215 (02) :679-733
[5]   The structure of Frobenius algebras and separable algebras [J].
Caenepeel, S ;
Ion, B ;
Militaru, G .
K-THEORY, 2000, 19 (04) :365-402
[6]   MONOIDAL HOM-HOPF ALGEBRAS [J].
Caenepeel, S. ;
Goyvaerts, I. .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (06) :2216-2240
[7]  
Chen YY, 2012, J LIE THEORY, V22, P1075
[8]  
Chen YY, 2010, J LIE THEORY, V20, P767
[9]   HOPF ALGEBRA ACTIONS [J].
COHEN, M ;
FISHMAN, D .
JOURNAL OF ALGEBRA, 1986, 100 (02) :363-379
[10]  
Fregier Y., 2009, J GEN LIE THEORY APP, V3, P285, DOI DOI 10.4303/JGLTA/S090402