An uncertainty principle for quaternion Fourier transform

被引:121
作者
Bahri, Mawardi [2 ]
Hitzer, Eckhard S. M. [2 ]
Hayashi, Akihisa [2 ]
Ashino, Ryuichi [1 ]
机构
[1] Osaka Kyoiku Univ, Div Math Sci, Osaka 5828582, Japan
[2] Univ Fukui, Dept Appl Phys, Fukui 9108507, Japan
关键词
Quaternion algebra; Quaternionic Fourier transform; Uncertainty principle; Gaussian quaternion signal; Hypercomplex functions;
D O I
10.1016/j.camwa.2008.05.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review the quaternionic Fourier transform (QFT). Using the properties of the QFT we establish an uncertainty principle for the right-sided QFT. This uncertainty principle prescribes a lower bound on the product of the effective widths of quaternion-valued signals in the spatial and frequency domains. It is shown that only a Gaussian quaternion signal minimizes the uncertainty. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2398 / 2410
页数:13
相关论文
共 23 条
[1]  
[Anonymous], 2007, INT J WAVELETS MULTI
[2]  
[Anonymous], 1999, THESIS U KIEL GERMAN
[3]  
Bas P, 2003, 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS, P521
[4]   The theory and use of the quaternion wavelet transform [J].
Bayro-Corrochano, E .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 24 (01) :19-35
[5]   Quaternion fourier descriptors for the preprocessing and recognition of spoken words using images of spatiotemporal representations [J].
Bayro-Corrochano, Eduardo ;
Trujillo, Noel ;
Naranjo, Michel .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2007, 28 (02) :179-190
[6]  
Bracewell R. N., 2000, FOURIER TRANSFORM IT
[7]  
Brackx F., 1982, Clifford Analysis
[8]   The two-dimensional Clifford-Fourier transform [J].
Brackx, Fred ;
De Schepper, Nele ;
Sommen, Frank .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 26 (1-2) :5-18
[9]  
Bülow T, 2001, GEOMETRIC COMPUTING WITH CLIFFORD ALGEBRAS, P187
[10]  
Chui C. K., 1992, INTRO WAVELETS