Finding all minimal infrequent multi-dimensional intervals

被引:2
|
作者
Elbassioni, KM [1 ]
机构
[1] Max Planck Inst Informat, Saarbrucken, Germany
来源
关键词
D O I
10.1007/11682462_40
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let D be a database of transactions on n attributes, where each attribute specifies a (possibly empty) real closed interval I = [a, b] subset of R. Given an integer threshold t, a multi-dimensional interval I = ([a(1), b(1]),...,[a(n), b(n)]) is called t-frequent, if (every component interval of) I is contained in (the corresponding component of) at least t transactions of D and otherwise, I is said to be t-infrequent. We consider the problem of generating all minimal t-infrequent multi-dimensional intervals, for a given database D and threshold t. This problem may arise, for instance, in the generation of association rules for a database of time-dependent transactions. We show that this problem can be solved in quasi-polynomial time. This is established by developing a quasi-polynomial time algorithm for generating maximal independent elements for a set; of vectors in the product of lattices of intervals, a result which may be of independent interest. In contrast, the generation problem for maximal frequent intervals turns out to be NP-hard.
引用
收藏
页码:423 / 434
页数:12
相关论文
共 50 条
  • [21] All-Dielectric Terahertz Metasurfaces for Multi-Dimensional Multiplexing and Demultiplexing
    Liu, Wanying
    Jiang, Xiaohan
    Xu, Quan
    Huang, Fan
    Yang, Quanlong
    Lu, Yongchang
    Gu, Yangfan
    Gu, Jianqiang
    Han, Jiaguang
    Zhang, Weili
    LASER & PHOTONICS REVIEWS, 2024, 18 (08)
  • [22] Scaling of hysteresis in a multi-dimensional all-optical bistable system
    N. E. Fettouhi
    B. Ségard
    J. Zemmouri
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 1999, 6 : 425 - 429
  • [23] The algorithm for integrating all incidence matrices in multi-dimensional group technology
    Li, ML
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2003, 86 (02) : 121 - 131
  • [24] Families of multi-dimensional arrays with optimal correlations between all members
    Tirkel, A.
    Cavy, B.
    Svalbe, I.
    ELECTRONICS LETTERS, 2015, 51 (15) : 1167 - 1168
  • [25] Scaling of hysteresis in a multi-dimensional all-optical bistable system
    Fettouhi, NE
    Ségard, B
    Zemmouri, J
    EUROPEAN PHYSICAL JOURNAL D, 1999, 6 (04): : 425 - 429
  • [26] MULTI-DIMENSIONAL SIGNALING
    WILSON, R
    ECONOMICS LETTERS, 1985, 19 (01) : 17 - 21
  • [27] MULTI-DIMENSIONAL CONSEQUENTIALISM
    Peterson, Martin
    RATIO, 2012, 25 (02) : 177 - 194
  • [28] A multi-dimensional world
    Taiwan Rev., 2007, 9 (48-49):
  • [29] Multi-dimensional rules
    Courtin, Sebastien
    Laruelle, Annick
    MATHEMATICAL SOCIAL SCIENCES, 2020, 103 : 1 - 7
  • [30] Multi-dimensional lives
    Mark Ronan
    Nature, 2008, 451 (7179) : 629 - 629