Resummation of QED radiative corrections in a strong constant crossed field

被引:58
作者
Mironov, A. A. [1 ,2 ,3 ]
Meuren, S. [4 ,5 ]
Fedotov, A. M. [2 ,6 ]
机构
[1] Russian Acad Sci, Prokhorov Gen Phys Inst, Moscow 119991, Russia
[2] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
[3] Russian Acad Sci, Steklov Math Inst, Moscow 119991, Russia
[4] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[5] SLAC Natl Accelerator Lab, Stanford PULSE Inst, Menlo Pk, CA 94025 USA
[6] Natl Res Tomsk State Univ, Lab Quantum Theory Intense Fields, Tomsk 634050, Russia
基金
俄罗斯基础研究基金会;
关键词
CHIRAL-SYMMETRY BREAKING; MAGNETIC-FIELD; INTENSE-FIELD; PERTURBATION-THEORY; QUANTUM PROCESSES; ELASTIC ELECTRON; ELECTRODYNAMICS; PROPAGATION; SCATTERING; SUMMATION;
D O I
10.1103/PhysRevD.102.053005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
By considering radiative corrections of up to 3rd-loop order, Ritus and Narozhny conjectured that the proper expansion parameter for QED in a strong constant crossed field is g = alpha chi(2/3), where the dynamical quantum parameter chi = e root-(Fp)(2)/m(3) combines the particle momentum p with the external field strength tensor F. Here we present and discuss the first nonperturbative result in this context, the resummed bubble-type polarization corrections to the electron self-energy in a constant crossed field. Our analysis confirms the relevance of the scaling parameter g to the enhancement of bubble-type radiative corrections. This parameter actually represents the characteristic value of the ratio of the 1-loop polarization bubble to the photon virtuality. After an all-order resummation we identify and discuss two contributions to the self-energy with different formation regions and asymptotic behavior for g >> 1. Whereas the breakdown of perturbation theory occurs already for g greater than or similar to 1, the leading-order result remains dominant until the asymptotic regime g >> 1 is reached. However, the latter is specific to processes like elastic scattering or photon emission and does not have to remain true for general higher-order QED processes.
引用
收藏
页数:18
相关论文
共 54 条
[1]  
[Anonymous], 1981, SOV PHYS JETP
[2]  
Artimovich G. K., 1990, Soviet Physics - JETP, V70, P787
[3]   QUANTUM RADIATION THEORY IN INHOMOGENEOUS EXTERNAL FIELDS [J].
BAIER, VN ;
KATKOV, VM ;
STRAKHOVENKO, VM .
NUCLEAR PHYSICS B, 1989, 328 (02) :387-405
[4]   Laser-solid interaction and its potential for probing radiative corrections in strong-field quantum electrodynamics [J].
Bauman, C. ;
Pukhov, A. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (07)
[5]   Probing non-perturbative QED with electron-laser collisions [J].
Baumann, C. ;
Nerush, E. N. ;
Pukhov, A. ;
Kostyukov, I. Yu. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[6]  
Berestetskii Vladimir Borisovich, 1982, Quantum Electrodynamics, V4
[7]   Reaching supercritical field strengths with intense lasers [J].
Blackburn, T. G. ;
Ilderton, A. ;
Marklund, M. ;
Ridgers, C. P. .
NEW JOURNAL OF PHYSICS, 2019, 21 (05)
[8]   Benchmarking semiclassical approaches to strong-field QED: Nonlinear Compton scattering in intense laser pulses [J].
Blackburn, T. G. ;
Seipt, D. ;
Bulanov, S. S. ;
Marklund, M. .
PHYSICS OF PLASMAS, 2018, 25 (08)
[9]   Electrodynamics of Pulsar Magnetospheres [J].
Cerutti, Benoit ;
Beloborodov, Andrei M. .
SPACE SCIENCE REVIEWS, 2017, 207 (1-4) :111-136
[10]   Testing Strong Field QED Close to the Fully Nonperturbative Regime Using Aligned Crystals [J].
Di Piazza, A. ;
Wistisen, T. N. ;
Tamburini, M. ;
Uggerhoj, U., I .
PHYSICAL REVIEW LETTERS, 2020, 124 (04)