Laser-induced quenching diagnostics of hydrogen atoms in fusion plasma

被引:3
作者
Gorbunov, A. [1 ]
Mukhin, E. [2 ]
Burgos, J. M. Munoz [3 ]
Krivoruchko, D. [1 ,4 ]
Vukolov, K. [1 ]
Kurskiev, G. [2 ]
Tolstyakov, S. [2 ]
机构
[1] NRC Kurchatov Inst, Moscow, Russia
[2] Ioffe Inst, St Petersburg, Russia
[3] Astro Fus Spectre LLC, San Diego, CA 92127 USA
[4] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
关键词
tokamak; diagnostics of plasma; laser-induced quenching; hydrogen; NEUTRAL DENSITY PROFILE; INDUCED FLUORESCENCE; ABSOLUTE MEASUREMENT; TOKAMAK PLASMA;
D O I
10.1088/1361-6587/ac89ad
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Laser-induced quenching (LIQ) is a new diagnostic technique developed for hydrogen and hydrogen-like ions with degenerate excited states. The technique is proposed for use in the local measurements of hydrogen parameters (density, temperature, velocity distribution etc) in the scrape-off-layer and divertor plasmas of tokamaks and other fusion devises. The H-alpha quenching effect was simulated via a dynamic collision-radiative model developed for the hydrogen atom. The model has also been applied to both analyze the performance of various spectroscopic schemes and to evaluate saturation effects and quenching signals. It is suggested that the LIQ technique could be use to measure hydrogen density as well as electron density from analysis of the quenching-to-fluorescence ratio. Experimental testing was performed in a glow discharge plasma with a pulsed wavelength-tunable OPO laser and in a Globus-M2 tokamak with a time-modulated 1875 nm fiber laser.
引用
收藏
页数:10
相关论文
共 20 条
[1]   Neutral density estimation in the ASDEX upgrade divertor from deuterium emissivity measurements during detachment and shoulder formation [J].
Agostini, M. ;
Vianello, N. ;
Carraro, L. ;
Carralero, D. ;
Cavedon, M. ;
Dux, R. ;
Naulin, V ;
Spolaore, M. ;
Wolfrum, E. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (11)
[2]   Evaluation of thermal helium beam and line-ratio fast diagnostic on the National Spherical Torus Experiment-Upgrade [J].
Burgos, J. M. Munoz ;
Agostini, M. ;
Scarin, P. ;
Stotler, D. P. ;
Unterberg, E. A. ;
Loch, S. D. ;
Schmitz, O. ;
Tritz, K. ;
Stutman, D. .
PHYSICS OF PLASMAS, 2016, 23 (05)
[3]   Kinetic theory and atomic physics corrections for determination of ion velocities from charge-exchange spectroscopy [J].
Burgos, J. M. Munoz ;
Burrell, K. H. ;
Solomon, W. M. ;
Grierson, B. A. ;
Loch, S. D. ;
Ballance, C. P. ;
Chrystal, C. .
NUCLEAR FUSION, 2013, 53 (09)
[4]   Two photon absorption laser induced fluorescence measurements of neutral density in a helicon plasma [J].
Galante, M. E. ;
Magee, R. M. ;
Scime, E. E. .
PHYSICS OF PLASMAS, 2014, 21 (05)
[5]   ABSOLUTE MEASUREMENT OF NEUTRAL DENSITY PROFILE IN A TOKAMAK PLASMA USING THE PRINCIPLE OF LASER-INDUCED IONIZATION [J].
GLADUSHCHAK, VI ;
GUSEV, VK ;
KANTOR, MY ;
PETROV, YV ;
RAZDOBARIN, GT ;
SEMENOV, VV ;
TOLSTYAKOV, SY .
NUCLEAR FUSION, 1995, 35 (11) :1385-1390
[6]   Laser-induced fluorescence of helium ions in ITER divertor [J].
Gorbunov, A., V ;
Mukhin, E. E. ;
Berik, E. B. ;
Melkumov, M. A. ;
Babinov, N. A. ;
Kurskiev, G. S. ;
Tolstyakov, S. Yu ;
Vukolov, K. Yu ;
Lisitsa, V. S. ;
Levashova, M. G. ;
Andrew, P. ;
Kempenaars, M. ;
Vayakis, G. ;
Walsh, M. J. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :2703-2706
[7]   Laser-induced fluorescence for ITER divertor plasma [J].
Gorbunov, A. V. ;
Mukhin, E. E. ;
Berik, E. B. ;
Vukolov, K. Yu. ;
Lisitsa, V. S. ;
Kukushkin, A. S. ;
Levashova, M. G. ;
Barnsley, R. ;
Vayakis, G. ;
Walsh, M. J. .
FUSION ENGINEERING AND DESIGN, 2017, 123 :695-698
[8]   Determination of the electron density in the tokamak edge plasma from the time evolution of a laser-induced fluorescence signal from atomic helium [J].
Gorbunov, A. V. ;
Shuvaev, D. A. ;
Moskalenko, I. V. .
PLASMA PHYSICS REPORTS, 2012, 38 (07) :574-578
[9]   Globus-M results as the basis for a compact spherical tokamak with enhanced parameters Globus-M2 [J].
Gusev, V. K. ;
Azizov, E. A. ;
Alekseev, A. B. ;
Arneman, A. F. ;
Bakharev, N. N. ;
Belyakov, V. A. ;
Bender, S. E. ;
Bondarchuk, E. N. ;
Bulanin, V. V. ;
Bykov, A. S. ;
Chernyshev, F. V. ;
Chugunov, I. N. ;
Dyachenko, V. V. ;
Filatov, O. G. ;
Iblyaminova, A. D. ;
Irzak, M. A. ;
Kavin, A. A. ;
Kurskiev, G. S. ;
Khitrov, S. A. ;
Khromov, N. A. ;
Kornev, V. A. ;
Krasnov, S. V. ;
Kuznetsov, E. A. ;
Labusov, A. N. ;
Larionov, M. M. ;
Lobanov, K. M. ;
Malkov, A. A. ;
Melnik, A. D. ;
Minaev, V. B. ;
Mineev, A. B. ;
Mironov, M. I. ;
Miroshnikov, I. V. ;
Novokhatsky, A. N. ;
Ovsyannikov, A. D. ;
Panasenkov, A. A. ;
Patrov, M. I. ;
Petrov, M. P. ;
Petrov, Yu. V. ;
Rozhansky, V. A. ;
Rozhdestvensky, V. V. ;
Saveliev, A. N. ;
Sakharov, N. V. ;
Shchegolev, P. B. ;
Shcherbinin, O. N. ;
Senichenkov, I. Yu. ;
Sergeev, V. Yu. ;
Shevelev, A. E. ;
Stepanov, A. Yu. ;
Tanchuk, V. N. ;
Tolstyakov, S. Yu. .
NUCLEAR FUSION, 2013, 53 (09)
[10]  
Janev R K., 1987, Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients