C1,α REGULARITY OF SOLUTIONS TO PARABOLIC MONGE-AMPERE EQUATIONS

被引:10
作者
Daskalopoulos, Panagiota [1 ]
Savin, Ovidiu [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
GAUSS CURVATURE FLOWS; WORN STONES; FLAT SIDES; HYPERSURFACES; BOUNDARY;
D O I
10.1353/ajm.2012.0030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study interior C-1,C-alpha regularity of viscosity solutions of the parabolic Monge-Ampere equation u(t) = b(x,t) (detD(2)u)(p), with exponent p> 0 and with coefficients b which are bounded and measurable. We show that when p is less than the critical power 1/n-2 then solutions become instantly C-1,C-alpha in the interior. Also, we prove the same result for any power p > 0 at those points where either the solution separates from the initial data, or where the initial data is C-1,C-beta.
引用
收藏
页码:1051 / 1087
页数:37
相关论文
共 15 条