Room temperature near unity spin polarization in 2D Van der Waals heterostructures

被引:57
作者
Zhang, Danliang [1 ]
Liu, Ying [2 ]
He, Mai [1 ]
Zhang, Ao [3 ]
Chen, Shula [2 ]
Tong, Qingjun [1 ]
Huang, Lanyu [1 ]
Zhou, Zhiyuan [1 ]
Zheng, Weihao [2 ]
Chen, Mingxing [3 ]
Braun, Kai [1 ,4 ,5 ]
Meixner, Alfred J. [4 ,5 ]
Wang, Xiao [1 ]
PanC, Anlian [2 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Key Lab Micronano Phys & Technol Hunan Prov, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Mat Sci & Engn, Key Lab Micronano Phys & Technol Hunan Prov, Changsha 410082, Hunan, Peoples R China
[3] Hunan Normal Univ, Sch Phys & Elect, Key Lab Matter Microstruct & Funct Hunan Prov, Changsha 410081, Peoples R China
[4] Univ Tubingen, Inst Phys & Theoret Chem, Morgenstelle 18, D-72076 Tubingen, Germany
[5] Univ Tubingen, LISA, Morgenstelle 18, D-72076 Tubingen, Germany
基金
中国国家自然科学基金;
关键词
VALLEY POLARIZATION; OPTOELECTRONICS; GENERATION; MONOLAYERS; COHERENCE; DYNAMICS; CRYSTAL; MOS2;
D O I
10.1038/s41467-020-18307-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The generation and manipulation of spin polarization at room temperature are essential for 2D van der Waals (vdW) materials-based spin-photonic and spintronic applications. However, most of the high degree polarization is achieved at cryogenic temperatures, where the spin-valley polarization lifetime is increased. Here, we report on room temperature high-spin polarization in 2D layers by reducing its carrier lifetime via the construction of vdW heterostructures. A near unity degree of polarization is observed in PbI2 layers with the formation of type-I and type-II band aligned vdW heterostructures with monolayer WS2 and WSe2. We demonstrate that the spin polarization is related to the carrier lifetime and can be manipulated by the layer thickness, temperature, and excitation wavelength. We further elucidate the carrier dynamics and measure the polarization lifetime in these heterostructures. Our work provides a promising approach to achieve room temperature high-spin polarizations, which contribute to spin-photonics applications.
引用
收藏
页数:8
相关论文
共 45 条
  • [1] Synthesis of PbI 2 Single-Layered Inorganic Nanotubes Encapsulated Within Carbon Nanotubes
    Cabana, Laura
    Ballesteros, Belen
    Batista, Eudar
    Magen, Cesar
    Arenal, Raul
    Oro-Sole, Judith
    Rurali, Riccardo
    Tobias, Gerard
    [J]. ADVANCED MATERIALS, 2014, 26 (13) : 2016 - 2021
  • [2] Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p-n Diodes
    Cheng, Rui
    Li, Dehui
    Zhou, Hailong
    Wang, Chen
    Yin, Anxiang
    Jiang, Shan
    Liu, Yuan
    Chen, Yu
    Huang, Yu
    Duan, Xiangfeng
    [J]. NANO LETTERS, 2014, 14 (10) : 5590 - 5597
  • [3] Delayed Luminescence in Lead Halide Perovskite Nanocrystals
    Chirvony, Vladimir S.
    Gonzalez-Carrero, Soranyel
    Suarez, Isaac
    Galian, Raquel E.
    Sessolo, Michele
    Bolink, Henk J.
    Martinez-Pastor, Juan P.
    Perez-Prieto, Julia
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (24) : 13381 - 13390
  • [4] Fox M., 2010, OPTICAL PROPERTIES S, P396
  • [5] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    [J]. NATURE, 2013, 499 (7459) : 419 - 425
  • [6] Jariwala D, 2017, NAT MATER, V16, P170, DOI [10.1038/NMAT4703, 10.1038/nmat4703]
  • [7] Zeeman splitting via spin-valley-layer coupling in bilayer MoTe2
    Jiang, Chongyun
    Liu, Fucai
    Cuadra, Jorge
    Huang, Zumeng
    Li, Ke
    Rasmita, Abdullah
    Srivastava, Ajit
    Liu, Zheng
    Gao, Wei-Bo
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [8] Properties of Excitons and Photogenerated Charge Carriers in Metal Halide Perovskites
    Jiang, Ying
    Wang, Xiao
    Pan, Anlian
    [J]. ADVANCED MATERIALS, 2019, 31 (47)
  • [9] Ultrafast dynamics in van der Waals heterostructures
    Jin, Chenhao
    Ma, Eric Yue
    Karni, Ouri
    Regan, Emma C.
    Wang, Feng
    Heinz, Tony F.
    [J]. NATURE NANOTECHNOLOGY, 2018, 13 (11) : 994 - 1003
  • [10] Jones AM, 2013, NAT NANOTECHNOL, V8, P634, DOI [10.1038/NNANO.2013.151, 10.1038/nnano.2013.151]