On the order of magnitude of the divisor function

被引:3
作者
Weber, M
机构
[1] Univ Strasbourg 1, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
关键词
divisor function; prime divisors; Bernoulli random walk;
D O I
10.1007/s10114-005-0679-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D be an increasing sequence of positive integers, and consider the divisor functions: [GRAPHICS] where [d, delta] = l. c. m.(d, delta). A probabilistic argument is introduced to evaluate the series Sigma(infinity)(n= 1) a(n)d (n, D) and Sigma(infinity)(n=1) a(n)d(2)(n, D).
引用
收藏
页码:377 / 382
页数:6
相关论文
共 6 条
[1]  
[Anonymous], RESULTS MATH
[2]   ON THE NUMBER OF INTEGERS N SUCH THAT ND (N) LESS-THAN-OR-EQUAL-TO X [J].
BALASUBRAMANIAN, R ;
RAMACHANDRA, K .
ACTA ARITHMETICA, 1988, 49 (04) :313-322
[3]  
HARDY GH, 1979, NIEUW ARCH WISK, V23, P13
[4]   An arithmetical property of Rademacher sums [J].
Weber, M .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (01) :133-149
[5]  
WEBER M, 2005, PERIOD MATH HUNG, V51, P119
[6]  
[No title captured]