Recent developments of RNA-based vaccines in cancer immunotherapy

被引:74
作者
Faghfuri, Elnaz [1 ]
Pourfarzi, Farhad [1 ]
Faghfouri, Amir Hossein [2 ]
Abdoli Shadbad, Mahdi [3 ]
Hajiasgharzadeh, Khalil [3 ]
Baradaran, Behzad [3 ]
机构
[1] Ardabil Univ Med Sci, Digest Dis Res Ctr, Ardebil, Iran
[2] Tabriz Univ Med Sci, Dept Nutr, Students Res Comm, Tabriz, Iran
[3] Tabriz Univ Med Sci, Immunol Res Ctr, Tabriz, Iran
关键词
Immunotherapy; cancer vaccines; RNA; vaccines; CONSTITUTIVELY ACTIVE TLR4; TUMOR-ASSOCIATED ANTIGEN; T-CELL RESPONSES; DENDRITIC CELLS; ANTITUMOR IMMUNITY; MESSENGER; DELIVERY; VACCINATION; INDUCTION; MELANOMA;
D O I
10.1080/14712598.2020.1815704
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Introduction Cancer immunotherapy is more dependent on monoclonal antibodies, proteins, and cells, as therapeutic agents, to attain prominent outcomes. However, cancer immunotherapy's clinical benefits need to be enhanced, as many patients still do not respond well to existing treatments, or their diseases may relapse after temporary control. RNA-based approaches have provided new options for advancing cancer immunotherapy. Moreover, considerable efforts have been made to utilize RNA for vaccine production. RNA vaccines, which encode tumor-associated or specific epitopes, stimulate adaptive immunity. This adaptive immune response is capable of elimination or reduction of tumor burden. It is crucial to develop effective RNA transfer technologies that penetrate the lipid bilayer to reach the cytoplasm for translation into functional proteins. Two important delivery methods include the loading of mRNA into dendritic cells ex vivo; and direct injection of naked RNA with or without a carrier. Areas covered The latest results of pre-clinical and clinical studies with RNA vaccines in cancer immunotherapy are summarized in this review. Expert opinion RNA vaccines are now in early clinical development with promising safety and efficacy outcomes. Also, the translation capacity and durability of these vaccines can be increased with chemical modifications and sequence engineering.
引用
收藏
页码:201 / 218
页数:18
相关论文
共 115 条
[1]   CD83 expression on dendritic cells and T cells: Correlation with effective immune responses [J].
Aerts-Toegaert, Cindy ;
Heirman, Carlo ;
Tuyaerts, Sandra ;
Corthals, Jurgen ;
Aerts, Joeri L. ;
Bonehill, Aude ;
Thielemans, Kris ;
Breckpot, Karine .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2007, 37 (03) :686-695
[2]   Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms [J].
Akinc, Akin ;
Querbes, William ;
De, Soma ;
Qin, June ;
Frank-Kamenetsky, Maria ;
Jayaprakash, K. Narayanannair ;
Jayaraman, Muthusamy ;
Rajeev, Kallanthottathil G. ;
Cantley, William L. ;
Dorkin, J. Robert ;
Butler, James S. ;
Qin, LiuLiang ;
Racie, Timothy ;
Sprague, Andrew ;
Fava, Eugenio ;
Zeigerer, Anja ;
Hope, Michael J. ;
Zerial, Marino ;
Sah, Dinah W. Y. ;
Fitzgerald, Kevin ;
Tracy, Mark A. ;
Manoharan, Muthiah ;
Koteliansky, Victor ;
de Fougerolles, Antonin ;
Maier, Martin A. .
MOLECULAR THERAPY, 2010, 18 (07) :1357-1364
[3]   Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): Phase 2 study results [J].
Amin, Asim ;
Dudek, Arkadiusz Z. ;
Logan, Theodore F. ;
Lance, Raymond S. ;
Holzbeierlein, Jeffrey M. ;
Knox, Jennifer J. ;
Master, Viraj A. ;
Pal, Sumanta K. ;
Miller, Wilson H., Jr. ;
Karsh, Lawrence I. ;
Tcherepanova, Irina Y. ;
DeBenedette, Mark A. ;
Williams, W. Lee ;
Plessinger, Douglas C. ;
Nicolette, Charles A. ;
Figlin, Robert A. .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2015, 3
[4]   Nucleoside modifications in RNA limit activation of 2'-5'-oligoadenylate synthetase and increase resistance to cleavage by RNase L [J].
Anderson, Bart R. ;
Muramatsu, Hiromi ;
Jha, Babal K. ;
Silverman, Robert H. ;
Weissman, Drew ;
Kariko, Katalin .
NUCLEIC ACIDS RESEARCH, 2011, 39 (21) :9329-9338
[5]   Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses [J].
Bahl, Kapil ;
Senn, Joe J. ;
Yuzhakov, Olga ;
Bulychev, Alex ;
Brito, Luis A. ;
Hassett, Kimberly J. ;
Laska, Michael E. ;
Smith, Mike ;
Almarsson, Orn ;
Thompson, James ;
Ribeiro, Amilcar ;
Watson, Mike ;
Zaks, Tal ;
Ciaramella, Giuseppe .
MOLECULAR THERAPY, 2017, 25 (06) :1316-1327
[6]   Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting [J].
Baldin, Alexey V. ;
Savvateeva, Lyudmila V. ;
Bazhin, Alexandr V. ;
Zamyatnin, Andrey A., Jr. .
CANCERS, 2020, 12 (03)
[7]   Improvement of In Vivo Expression of Genes Delivered by Self-Amplifying RNA Using Vaccinia Virus Immune Evasion Proteins [J].
Beissert, Tim ;
Koste, Lars ;
Perkovic, Mario ;
Walzer, Kerstin C. ;
Erbar, Stephanie ;
Selmi, Abderraouf ;
Diken, Mustafa ;
Kreiter, Sebastian ;
Tureci, Ozlem ;
Sahin, Ugur .
HUMAN GENE THERAPY, 2017, 28 (12) :1138-1146
[8]   mRNA-based dendritic cell vaccines [J].
Benteyn, Daphne ;
Heirman, Carlo ;
Bonehill, Aude ;
Thielemans, Kris ;
Breckpot, Karine .
EXPERT REVIEW OF VACCINES, 2015, 14 (02) :161-176
[9]   Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours [J].
Bialkowski, Lukasz ;
van Weijnen, Alexia ;
Van der Jeught, Kevin ;
Renmans, Dries ;
Daszkiewicz, Lidia ;
Heirman, Carlo ;
Stange, Geert ;
Breckpot, Karine ;
Aerts, Joeri L. ;
Thielemans, Kris .
SCIENTIFIC REPORTS, 2016, 6
[10]   Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA [J].
Blakney, Anna K. ;
McKay, Paul F. ;
Yus, Barbara Ibarzo ;
Aldon, Yoann ;
Shattock, Robin J. .
GENE THERAPY, 2019, 26 (09) :363-372