This work aimed to establish the main factors that affect an adsorptive air conditioning system applied to a vehicle. They were determined by how they influence the system's performance and continuity, being divided in five groups (input parameters, work pairs, cycle types, reactor's design and output parameters). Analyzing such factors, it is possible to predict how the system will behave and the results it will provide. Some main characteristics of each factor were highlighted, and an attempt was made to determine those that would best fit the system in question. It was noted that the best heat source would be the spark combustion engine exhaust gas, as it has higher temperatures and pressures. The ideal working pairs are silica gel / water, activated carbon / water, activated carbon / R32 and zeolite / water, providing faster cycles and greater adsorption capacity. The best cycle is the Multi-Bed Cycle paired with Recovery Cycles, allowing for greater system continuity without making the cycle extremely complex. The best designs would be the finned tube or plate, as they achieve the best efficiency values, without compromising the reactor size. Finally, the systems needed to present high efficiency parameters, with the least amount of "dead mass". Going through each factor in this particular order helped to choose the ideal options, while avoiding too problematic crossed influences. Thus, by finally combining the factors, it is possible to develop different conceptions, which may lead to different results, expanding this research and studies for new adsorption refrigeration systems.